Schiesser | Modeling of Post-Myocardial Infarction | Buch | 978-0-443-13611-5 | sack.de

Buch, Englisch, 144 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

Schiesser

Modeling of Post-Myocardial Infarction

Ode/Pde Analysis with R
Erscheinungsjahr 2023
ISBN: 978-0-443-13611-5
Verlag: Elsevier Science

Ode/Pde Analysis with R

Buch, Englisch, 144 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

ISBN: 978-0-443-13611-5
Verlag: Elsevier Science


Modeling of Post-Myocardial Infarction: ODE/PDE Analysis with R presents mathematical models for the dynamics of a post-myocardial (post-MI), aka, a heart attack. The mathematical models discussed consist of six ordinary differential equations (ODEs) with dependent variables Mun; M1; M2; IL10; T?; IL1. The system variables are explained as follows: dependent variable Mun = cell density of unactivated macrophage; dependent variable M1 = cell density of M1 macrophage; dependent variable M2 = cell density of M2 macrophage; dependent variable IL10 = concentration of IL10, (interleuken-10); dependent variable T? = concentration of TNF-? (tumor necrosis factor-?); dependent variable IL1 = concentration of IL1 (interleuken-1).

The system of six ODEs does not include a spatial aspect of an MI in the cardiac tissue. Therefore, the ODE model is extended to include a spatial effect by the addition of diffusion terms. The resulting system of six diffusion PDEs, with x (space) and t (time) as independent variables, is integrated (solved) by the numerical method of lines (MOL), a general numerical algorithm for PDEs.

Schiesser Modeling of Post-Myocardial Infarction jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. ODE Model Development
2. ODE Model Implementation
3. PDE Model Formulation and Implementation
4. PDE Model Temporal Derivative Analysis
5. Analysis of the PDE Model Terms
Appendix A: Functions dss004, dss044


Schiesser, William E
Dr. William E. Schiesser is Emeritus McCann Professor of Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. He holds a PhD from Princeton University and a ScD (hon) from the University of Mons, Belgium. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs), and the development of mathematical models based on ODE/DAE/PDEs. He is the author or coauthor of more than 16 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations, and government agencies.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.