E-Book, Englisch, Band 30, 220 Seiten
Reihe: Cognitive Systems Monographs
Schauerte Multimodal Computational Attention for Scene Understanding and Robotics
1. Auflage 2016
ISBN: 978-3-319-33796-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 30, 220 Seiten
Reihe: Cognitive Systems Monographs
ISBN: 978-3-319-33796-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent computational attention models for processing visual and acoustic input. It covers the biological background of visual and auditory attention, as well as bottom-up and top-down attentional mechanisms and discusses various applications. In the first part new approaches for bottom-up visual and acoustic saliency models are presented and applied to the task of audio-visual scene exploration of a robot. In the second part the influence of top-down cues for attention modeling is investigated.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Contents;8
3;About the Author;10
4;Abbreviations;10
5;List of Figures;13
6;List of Tables;20
7;Abstract;22
8;1.1 Contributions;27
9;1.2 Outline;29
10;References;30
11;2 Background;31
11.1;2.1 Attention Models;31
11.1.1;2.1.1 Visual Attention;32
11.1.2;2.1.2 Auditory Attention;38
11.1.3;2.1.3 Multimodal Attention;43
11.2;2.2 Applications of Attention Models;44
11.2.1;2.2.1 Image Processing and Computer Vision;45
11.2.2;2.2.2 Audio Processing;46
11.2.3;2.2.3 Robotics;46
11.2.4;2.2.4 Computer Graphics;47
11.2.5;2.2.5 Design, Marketing, and Advertisement;48
11.3;References;49
12;3 Bottom-Up Audio-Visual Attention for Scene Exploration;56
12.1;3.1 Related Work and Contributions;58
12.1.1;3.1.1 Spectral Visual Saliency;58
12.1.2;3.1.2 Visual Saliency and Color Spaces;60
12.1.3;3.1.3 Visual Saliency and Faces;61
12.1.4;3.1.4 Auditory Saliency;62
12.1.5;3.1.5 Audio-Visual Saliency-Based Exploration;62
12.1.6;3.1.6 Scene Analysis;64
12.2;3.2 Visual Attention;65
12.2.1;3.2.1 Spectral Visual Saliency;67
12.2.2;3.2.2 Color Space Decorrelation;84
12.2.3;3.2.3 Modeling the Influence of Faces;95
12.3;3.3 Auditory Attention;102
12.3.1;3.3.1 Auditory Novelty Detection;102
12.3.2;3.3.2 Evaluation;106
12.4;3.4 Saliency-Based Audio-Visual Exploration;108
12.4.1;3.4.1 Gaussian Proto-Object Model;109
12.4.2;3.4.2 Auditory Proto-Objects;109
12.4.3;3.4.3 Visual Proto-Objects;110
12.4.4;3.4.4 Audio-Visual Fusion and Inhibition;113
12.4.5;3.4.5 Evaluation;115
12.5;3.5 Multiobjective Exploration Path;119
12.5.1;3.5.1 Exploration Path;120
12.5.2;3.5.2 Exploration Strategies;120
12.5.3;3.5.3 Evaluation;122
12.6;3.6 Summary and Future Directions;126
12.7;References;128
13;4.1 Related Work and Contributions;137
13.1;4.1.1 Joint Attention;137
13.2;4.1.2 Visual Attention;140
14;4.2 Debiased Salient Object Detection;144
14.1;4.2.1 The MSRA Dataset;145
14.2;4.2.2 MSRA's Photographer Bias;146
14.3;4.2.3 Salient Object Detection;149
14.4;4.2.4 Debiased Salient Object Detection and Pointing;153
15;4.3 Focusing Computational Attention in Human-Robot Interaction;154
15.1;4.3.1 Pointing Gestures;156
15.2;4.3.2 Language;165
16;4.4 Gaze Following in Web Images;179
16.1;4.4.1 Approach;180
16.2;4.4.2 The Gaze@Flickr Dataset;181
16.3;4.4.3 Evaluation;183
17;4.5 Summary and Future Directions;188
18;References;190
19;5 Conclusion;196
19.1;5.1 Summary;196
19.2;5.2 Future Work;198
20;Appendix A Applications;200
21;Appendix B Dataset Overview;206
22;Appendix C Color Space Decorrelation: Full Evaluation;209
23;Appendix D Center Bias Integration Methods;216




