Schäuble | Multimedia Information Retrieval | Buch | 978-1-4613-7825-9 | sack.de

Buch, Englisch, Band 397, 190 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: The Springer International Series in Engineering and Computer Science

Schäuble

Multimedia Information Retrieval

Content-Based Information Retrieval from Large Text and Audio Databases

Buch, Englisch, Band 397, 190 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4613-7825-9
Verlag: Springer US


Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases addresses the future need for sophisticated search techniques that will be required to find relevant information in large digital data repositories, such as digital libraries and other multimedia databases. Because of the dramatically increasing amount of multimedia data available, there is a growing need for new search techniques that provide not only fewer bits, but also the most relevant bits, to those searching for multimedia digital data. This book serves to bridge the gap between classic ranking of text documents and modern information retrieval where composite multimedia documents are searched for relevant information.
Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases begins to pave the way for speech retrieval; only recently has the search for information in speech recordings become feasible. This book provides the necessary introduction to speech recognition while discussing probabilistic retrieval and text retrieval, key topics in classic information retrieval. The book then discusses speech retrieval, which is even more challenging than retrieving text documents because word boundaries are difficult to detect, and recognition errors affect the retrieval effectiveness. This book also addresses the problem of integrating information retrieval and database functions, since there is an increasing need for retrieving information from frequently changing data collections which are organized and managed by a database system.
Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases serves as an excellent reference source and may be used as a text for advanced courses on the topic.
Schäuble Multimedia Information Retrieval jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Towards Lightweight Information.- 1.2 What is Multimedia Information Retrieval?.- 1.3 Examples of Multimedia Information Retrieval Systems.- 1.4 Vector Space Retrieval.- 1.5 Interactive Search Techniques.- 1.6 Evaluation Issues.- 1.7 Similarity Thesauri.- 2 Probabilistic Retrieval.- 2.1 Information Retrieval Events in a Probability Space.- 2.2 Cooper and Robertson’s Probability Ranking Principle.- 2.3 Robertson-Sparck Jones Weighting.- 2.4 Logistic Inference Models.- 3 Text Retrieval.- 3.1 Text Characteristics.- 3.2 Vocabularies for Text Indexing.- 3.3 Weighting and Retrieval Functions.- 4 Automatic Speech Recognition.- 4.1 Speech Sound Waves.- 4.2 Digital Speech Signal Processing.- 4.3 Hidden Markov Model (HMM) Theory.- 4.4 HMM Based Recognition.- 5 Speech Retrieval.- 5.1 Introduction.- 5.2 Speech Recognition.- 5.3 Indexing and Retrieval by N-Grams.- 5.4 Indexing and Retrieval by Word Matching.- 5.5 Metadata Organisation and Query Processing.- 5.6 Recognition Errors and Retrieval Effectiveness.- 5.7 Experiments.- 6 Case Study: Retrieving Scanned Library Cards.- 6.1 Introduction.- 6.2 Probabilistic Term Weighting and Retrieval.- 6.3 Estimating Occurrence Probabilities.- 6.4 Retrieval for One-Word Queries.- 6.5 Including Ordering Information.- 7 Integrating Information Retrieval and Database Functions.- 7.1 Introduction.- 7.2 System Architecture.- 7.3 Transactions on the IR Index.- 7.4 Transaction Manager of the SPIDER IR Server.- 8 Outlook.- A Theorems and Proofs.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.