Schäfke | Einführung in die Theorie der Speziellen Funktionen der Mathematischen Physik | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 118, 249 Seiten, eBook

Reihe: Grundlehren der mathematischen Wissenschaften

Schäfke Einführung in die Theorie der Speziellen Funktionen der Mathematischen Physik


Erscheinungsjahr 2013
ISBN: 978-3-642-94867-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, Band 118, 249 Seiten, eBook

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-94867-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Schäfke Einführung in die Theorie der Speziellen Funktionen der Mathematischen Physik jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Grundlagen.- 1.1. Die Schwingungsgleichung.- 1.2. Funktionentheoretische Hilfsmittel.- 1.3. Die Laplace-Transformation.- 2. Die Gammafunktion.- 2.1. Definition und einige Haupteigenschaften.- 2.2. Charakterisierung durch Funktionalgleichung und logarithmische Konvexität. Folgerungen.- 2.3. Die Darstellung von ??(z) als Laplace-Integral. Die asymptotische Reihe für log ?(z+1).- 2.4. Die Hankeische Integraldarstellung für die reziproke Gammafunktion und Verwandtes.- 3. Die Zylinderfunktionen.- 3.1. Integralrelationen.- 3.2. Die Bessel-Funktionen ganzer Indizes.- 3.3. Die Bessel-Funktionen beliebiger Indizes.- 3.4. Hankel-Funktionen und Neumannsche Funktion. Asymptotische Reihen für x??.- 3.5. Rekursionsformeln.- 3.6. Wronskische Determinanten.- 3.7. Das (ebene) Additionstheorem.- 3.8. Laplace-Transformation von Bessel-Funktionen.- 3.9. Jv+n(x) und Jv+n((v+n)x) als Eigenfunktionen.- 4. Die hypergeometrische Funktion. Grundlagen.- 4.1. Differentialgleichung und Reihe.- 4.2. Integraldarstellungen.- 4.3. Lineare Transformationen.- 4.4. Quadratische Transformationen.- 4.5. „Verallgemeinerte Kugelfunktionen“.- 5. Kugelfunktionen.- 5.1. Allgemeines.- 5.2. Die Legendreschen Polynome.- 5.3. Die Funktionen $$P_n^m (x)\,(m = 0,\,1,\,...;\,n = m,\,m + 1,\,m + 2,\,...)$$.- 5.4. Die Funktionen $$Q_n^m (x)\,(m = 0,\,1,\,2,\,...;\,n = m,\,m + 1,\,m + 2,\,...)$$.- 5.5. Die Kugelflächenfunktionen.- 5.6. Kugelfunktionen zu beliebigen Indizes.- 5.7. Rekursionsformeln.- 5.8. Kugelfunktionen als Eigenfunktionen.- 5.9. Die Polynome von GEGENBAUER.- 6. Konfluente hypergeometrische Funktionen.- 6.1. Kummersche Differentialgleichung und Reihe. Transformationsformeln.- 6.2. Die Whittakersche Differentialgleichung.- 6.3. Integraldarstellungen.- 6.4. Einige Spezialfälle.- 6.5.Asymptotische Reihen (x groß). Zusammenhangsformeln.- 6.6. Rekursionsformeln.- 6.7. Whittakersche Differentialgleichung: Wronskische Determinanten und Orthogonalität.- 6.8. Whittakersche Funktionen als Eigenfunktionen.- 7. Die „F-Gleichung“.- 7.1. Reduktion von Differentialrekursionsformeln auf die „F-Gleichung“.- 7.2. Reihenentwicklungen.- 7.3. Differentialformeln.- 7.4. Integralrelationen.- 8. Biorthogonalentwicklungen analytischer Funktionen.- 8.1. Ein allgemeines Prinzip zur Gewinnung von Entwicklungssätzen und asymptotischen Aussagen.- 8.2. Reihen nach Bessel-Funktionen.- 8.3. Reihen nach Whittakerschen Funktionen.- 8.4. Entwicklungen nach Kugelfunktionen.- 8.5. Entwicklungen nach hypergeometrischen Funktionen.- 8.6. Asymptotische Formeln.- 8.7. Bemerkung zu den Entwicklungssätzen.- Literaturhinweise.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.