E-Book, Englisch, 438 Seiten, Web PDF
Reihe: IFAC Postprint Volume
Schaechter / Lorell Automatic Control in Aerospace 1994 (Aerospace Control '94)
1. Auflage 2014
ISBN: 978-1-4832-9692-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 438 Seiten, Web PDF
Reihe: IFAC Postprint Volume
ISBN: 978-1-4832-9692-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
An important, successful area for control systems development is that of state-of-the-art aeronautical and space related technologies. Leading researchers and practitioners within this field have been given the opportunity to exchange ideas and discuss results at the IFAC symposia on automatic control in aerospace. The key research papers presented at the latest in the series have been put together in this publication to provide a detailed assessment of present and future developments of these control system technologies.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Automatic Control in Aerospace (Aerospace Control '94);2
3;Copyright Page;3
4;Table of Contents;6
5;IFAC SYMPOSIUM ON AUTOMATIC CONTROL IN AEROSPACE 1994;4
6;CHAPTER 1. OPTIMAL MULTI-CRITERIA AEROASSISTED ORBITAL TRANSFER TRAJECTORIES;10
6.1;1. INTRODUCTION;10
6.2;2. MATHEMATICAL MODEL;11
6.3;3. MULTI-CRITERIA TRAJECTORY OPTIMIZATION;12
6.4;4. THE AEROASSISTED ORBITAL TRANSFER PROBLEM;13
6.5;5. RESULTS AND DISCUSSION;15
6.6;6. CONCLUSIONS;16
6.7;Acknowledgments;16
6.8;7. REFERENCES;16
7;CHAPTER 2. ROCKET ASCENT WITH HEAT-FLUX AND SPLASH DOWNCONSTRAINTS;18
7.1;1 INTRODUCTION;18
7.2;2 MATHEMATICAL MODELS;19
7.3;3 OPTIMIZATION METHOD;22
7.4;4 COMPUTATIONAL STUDY;22
7.5;5 CONCLUSIONS;23
7.6;6 REFERENCES;23
8;CHAPTER 3. HIERARCHICAL MODELING APPROACH IN AIRCRAFT TRAJECTORY OPTIMIZATION;26
8.1;1. INTRODUCTION;26
8.2;2. MATHEMATICAL MODELING;26
8.3;3. DYNAMIC-MODEL STRUCTURE;27
8.4;4. HIERARCHICAL OPTIMIZATION;28
8.5;5. NUMERICAL RESULTS;29
8.6;CONCLUSIONS;29
8.7;ACKNOWLEDGEMENTS;29
8.8;REFERENCES;31
9;CHAPTER 4. NONLINEAR ANALYSIS AND DESIGN OF SHUTTLE-TYPE ENTRY GUIDANCE;32
9.1;1. INTRODUCTION;32
9.2;2. GUIDANCE PROBLEM FORMULATION;32
9.3;3. GUIDANCE LAWS;33
9.4;4. STABILITY AND PERFORMANCE;34
9.5;5. ASSESSMENT;36
9.6;6. CONCLUSIONS;36
9.7;7. ACKNOWLEDGMENT;36
9.8;8. REFERENCES;36
10;CHAPTER 5. OPTIMAL GUIDANCE OF A SOLAR SAIL SPACECRAFT TO THE SUN-EARTH L2 POINT;38
10.1;1. INTRODUCTION;38
10.2;2. PROBLEM DEFINITION;39
10.3;3. OPEN-LOOP TRAJECTORY;40
10.4;4. GUIDANCE;41
10.5;5. CONCLUSIONS;43
10.6;6. REFERENCES;43
11;CHAPTER 6. ADAPTIVE WING CAMBER OPTIMIZATION: A PERIODIC PERTURBATION APPROACH;44
11.1;1. INTRODUCTION;44
11.2;2. PROBLEM FORMULATION;45
11.3;3. A PERIODIC PERTURBATION EXTREMASEARCHING TECHNIQUE: THE WORKING PRINCIPLE;46
11.4;4. PRACTICAL IMPLEMENTATION OF THE ALGORITHM: EQUIVALENT CIRCUIT AND DESIGN;46
11.5;5. APPLICATION TO ACTIVE CAMBER OPTIMIZATION;47
11.6;6. CONCLUDING REMARKS;49
11.7;7. REFERENCES;49
12;CHAPTER 7. PARAMETER ROBUST FLIGHT CONTROL SYSTEMFOR A FLEXIBLE AIRCRAFT;50
12.1;1. INTRODUCTION;50
12.2;2. MIXED CONTROL;50
12.3;3. PARAMETER ROBUST MIXED CONTROL;52
12.4;4. PERFORMANCE REQUIREMENT;52
12.5;5. APPLICATION;53
12.6;6. CONCLUSION;55
12.7;7. REFERENCES;55
13;CHAPTER 8. NON-SMOOTH RESONANCE CONTROL OF COMPLEX BIFURCATIONS IN AIRCRAFT FLIGHT;56
13.1;1. INTRODUCTION;56
13.2;2. NORMAL FORMS AND AVERAGING REDUCTION METHODS;56
13.3;3. ESTIMATION OF RESIDUAL TERMS;57
13.4;4 . RESONANCE STABILIZATION;57
13.5;5. ANALYSIS AND CONTROL OF COMPLEX BIFURCATIONS OF AN AIRCRAFT MODEL;58
13.6;6. CONCLUSION;60
13.7;7. REFERENCES;60
14;CHAPTER 9. HIGH ANGLE OF ATTACK VELOCITY VECTOR ROLLS;62
14.1;1. INTRODUCTION;62
14.2;2. APPROACH;63
14.3;3. MODELING;63
14.4;4. QFT OVERVIEW;64
14.5;5. ATTACK ON NONLINEARITIES AND UNCERTAINTY;64
14.6;6. CONTROLLER DESIGN;65
14.7;7. RESULTS;66
14.8;8. CONCLUSIONS;67
14.9;9. REFERENCES;67
15;CHAPTER 10. A ROUTE ORIENTED PLANNING AND CONTROL CONCEPT FOR EFFICIENT FLIGHT OPERATIONS AT BUSY AIRPORTS;70
15.1;1. INTRODUCTION;70
15.2;2. CURRENT AIRPORT OPERATIONS;70
15.3;3. CONCEPT DESCRIPTION;71
15.4;4. DESIGN ALGORITHMS;72
15.5;5. PLANNING OF LANDING SEQUENCES AND SCHEDULES;74
15.6;6. GENERATION OF SPEED CONTROL ADVISORIES;74
15.7;7. OPERATIONAL ANALYSIS RESULTS;75
15.8;8. SUMMARY;75
15.9;9. REFERENCES;75
16;CHAPTER 11. MODEL BASED VISION FOR AIRCRAFT POSITION DETERMINATION;76
16.1;I. INTRODUCTION;76
16.2;II. PRELIMINARIES;76
16.3;III. POINT SENSITIVITY;77
16.4;IV. SENSITIVITY DURING LANDING;77
16.5;V. ERROR CORRECTION;79
16.6;VI. CONCLUSIONS;80
16.7;APPENDIX;81
16.8;REFERENCES;81
17;CHAPTER 12. THE FINAL APPROACH SPACING TOOL;82
17.1;1. INTRODUCTION;82
17.2;2. FINAL APPROACH SPACING TOOL;82
17.3;3. SIMULATION AND FIELD TESTING;87
17.4;4 CONCLUDING REMARKS;88
17.5;5. REFERENCES;88
18;CHAPTER 13. TOWARDS A RENDEZ-VOUS PROBLEM BETWEEN AN AIRCRAFT AND AUTOMATIZED STEERING VEHICLES;90
18.1;1. INTRODUCTION;90
18.2;2. BACKGROUND PROBLEM DESCRIPTION;90
18.3;3. EQUATIONS OF MOTION;91
18.4;4. PRESCRIBED TRAJECTORY;91
18.5;5. CONTROL LAW;92
18.6;6. TOWARDS THE RENDEZ-VOUS;92
18.7;7. CONCLUSION;93
18.8;8. REFERENCES;93
19;CHAPTER 14. AN AIRBORNE WINDSHEAR DETECTION SYSTEM FOR GENERAL AVIATION AIRCRAFT;94
19.1;1. INTRODUCTION;94
19.2;2. WINDSHEAR AND MICROBURSTS;94
19.3;3, AIRCRAFT LONGITUDINAL DYNAMICS;95
19.4;4. STATE SPACE REPRESENTATION;96
19.5;5. WINUSHEAR ESTIMATIO NALGORITHM;96
19.6;6. OBSERVER DESIGN;96
19.7;7. WINDSHEAR COMPONENTS EXTRACTION;97
19.8;8. SIMULATION RESULTS;97
19.9;9. AIRBORNE WINDSHEAR DETECTION SYSTEM;98
19.10;10. CONCLUSIONS;98
19.11;REFERENCES;98
20;CHAPTER 15. A RECONFIGURABLE FLIGHT CONTROL, SCHEME FOR AN OBLIQUE-WINGED AIRCRAFT;100
20.1;1 INTRODUCTION;100
20.2;2 AIRCRAFT DYNAMICS;100
20.3;3. BASELINE AUTOMATIC FLIGHT CONTROL SYSTEM;101
20.4;4. RECONFIGURATION CONTROL SCHEME;102
20.5;5. CONCLUSIONS;103
20.6;REFERENCES;104
21;CHAPTER 16. EURECA MISSION SUMMARY;106
21.1;1. SUMMARY OF ACHIEVEMENTS;106
21.2;2. SPACECRAFT PERFORMANCE;107
21.3;3. GROUND SEGMENT PERFORMANCE;110
21.4;4. RECOMMENDATIONS FOR THE NEXT FLIGHT;111
21.5;5. GENERIC LESSONS LEARNT FOR FUTURE MISSIONS;112
21.6;6. CONCLUSIONS;113
22;CHAPTER 17. In-Orbit Performance of the EURECA AOCS;120
22.1;1. Introduction;120
22.2;2. AOCS Design;120
22.3;3. EURECA flight experience;121
22.4;4 H/W problems and FDIR;124
22.5;5. Conclusion;126
23;CHAPTER 18. THE EXPERIENCE WITH THE EURECA ON-BOARD AUTONOMOUS FAULT MANAGEMENT FUNCTIONS;130
23.1;1. INTRODUCTION;130
23.2;2. THE EURECA AUTONOMOUSFAULT MANAGEMENT;131
23.3;3. IMPACT ON THE GROUND SEGMENTAND OPERATIONS CONCEPT;133
23.4;4. EXPERIENCES FROM THEFIRST EURECA MISSION;134
23.5;5. CONCLUSIONS;135
23.6;6. REFERENCES;135
24;CHAPTER 19. AOCS DESIGN FOR A LOW ALTITUDE EARTHPOINTING SATELLITE;136
24.1;1. INTRODUCTION;136
24.2;2. THE S/C AND ITS AOCS H/W;136
24.3;3. DESCRIPTION OF AOCS MODES OF OPERATION;138
24.4;4. MAGNETOMETER USE;139
24.5;5. CONCLUSION;141
24.6;6. REFERENCES;141
25;CHAPTER 20. MISSILE AUTOPILOT DESIGN USING NONLINEAR H8 OPTIMAL CONTROL;142
25.1;1. INTRODUCTION;142
25.2;2. APPROXIMATE SOLUTION TO THE HJIEQUATION;143
25.3;3. van der Schaft Example;144
25.4;4. Missile Nonlinear H8 Optimal Control;145
25.5;5. Conclusions and Future Research;147
25.6;References;148
26;CHAPTER 21. H8 design of a multivariable missile autopilot using coprime factors;150
26.1;1 Introduction;150
26.2;2. Design objectives;151
26.3;3. Missile model;151
26.4;4. Coprime factor based H„ design;151
26.5;5. Design of the autopilot;152
26.6;6. Robustness analysis;153
26.7;7. Non linear evaluation;153
26.8;8. Conclusion;154
26.9;References;154
27;CHAPTER 22. ROBUST NONLINEAR MISSILE AUTOPILOT DESIGN;156
27.1;1. INTRODUCTION;156
27.2;2. AUTOPILOT DESIGN;156
27.3;3. RESULTS;158
27.4;4. CONCLUSIONS;158
27.5;5. REFERENCES;159
28;CHAPTER 23. SATURATION PREVENTION STRATEGIES FOR AN UNSTABLE BANK-TO-TURN (BTT) MISSILE: FULL INFORMATION;160
28.1;1. INTRODUCTION;160
28.2;2. MISSILE, AUTOPILOT, ISSUES;160
28.3;3 . ERROR GOVERNOR;161
28.4;4. REFERENCE GOVERNOR;163
28.5;5 . APPLICATION TO MISSILE;163
28.6;6. SUMMARY AND DIRECTIONS;164
28.7;7. REFERENCES;164
29;CHAPTER 24. LOW-COST SPACE STRUCTURE POINTING EXPERIMENT;166
29.1;1. INTRODUCTION;166
29.2;2. SYSTEM DEFINITION;168
29.3;3. SATELLITE;168
29.4;4. PAYLOAD;170
29.5;5. PROGRAM STATUS;170
29.6;6. CONCLUSION;171
29.7;7. REFERENCES;171
30;CHAPTER 25. ATTITUDE AND ORBIT CONTROL SUBSYSTEM FOR JERS-1 AND ITS FLIGHT EXPERIENCES;172
30.1;1. INTRODUCTION;172
30.2;2. NORMAL MODE REGULATOR DESIGN;172
30.3;3. FLIGHT EXPERIENCES;174
30.4;4. CONCLUSIONS;177
30.5;5. REFERENCES;177
31;CHAPTER 26. GADACS: A GPS ATTITUDE DETERMINATION AND CONTROL EXPERIMENT ON A SPARTAN SPACECRAFT;178
31.1;1. INTRODUCTION;178
31.2;2. GADACS MISSION OVERVIEW;179
31.3;3. SPACE FLIGHT EXPERIMENTATION RATIONALE;179
31.4;4. GADACS HARDWARE DESCRIPTION;180
31.5;5. CONTROLLER DESCRIPTION;181
31.6;6. FAILURE DETECTION AND CORRECTION;182
31.7;7. CONCLUSIONS;183
31.8;8. ACKNOWLEDGMENTS;183
31.9;REFERENCES;183
32;CHAPTER 27. THE ATTITUDE CONTROL SUBSYSTEM AND INTER ORBIT POINTING SUBSYSTEM FOR COMMUNICATIONS AND BROADCASTING ENGINEERING TEST SATELLITE;184
32.1;1. INTRODUCTION;184
32.2;2. ATTITUDE CONTROL SUBSYSYEM;185
32.3;3. INTER ORBIT LINK ANTENNA POINTING SYSTEM (IOL-APS);186
32.4;4. COOPERATIVE CONTROL BETWEEN ACS AND IOL-APS;188
32.5;5. TESTS;188
32.6;6. CONCLUSION;189
32.7;7. REFERENCE;189
33;CHAPTER 28. ANGULAR TRACKING FOR GEOSTATIONARY ORBITS;190
33.1;1. INTRODUCTION;190
33.2;2. ORBITAL MECHANICS;190
33.3;3. ORBIT DETERMINATION;191
33.4;4. ANTENNA ANGLE TRACKING;192
33.5;5. INTERFEROMETER TRACKING;193
33.6;6. CONCLUSIONS;193
33.7;REFERENCES;193
34;CHAPTER 29. FIRST TETHERED SATELLITE SYSTEM: SATELLITE GYRO DRIFT ON-FLIGHT IDENTIFICATION;196
34.1;1 INTRODUCTION;196
34.2;2 ESTIMATOR DESIGN;197
34.3;3 SIMULATION ANALYSIS;200
34.4;4 MISSION RESULTS;201
34.5;CONCLUSIONS;203
34.6;REFERENCES;203
35;CHAPTER 30. FULL SATELLITE STATE DETERMINATION FROM VECTOR OBSERVATIONS;204
35.1;1. INTRODUCTION;204
35.2;2. EXTENDED KALMAN FILTER;205
35.3;3 SIMULATION RESULTS;207
35.4;4. CONCLUSIONS;209
35.5;5 REFERENCES;209
36;CHAPTER 30. TOPAZ II REACTOR CONTROL UNIT DEVELOPMENT AT PHILLIPS LABORATORY;210
36.1;1. INTRODUCTION;210
36.2;2. THE TOPAZ INTERNATIONAL PROGRAM;210
36.3;3. THE TOPAZ II SPACE REACTOR SYSTEM;211
36.4;4. THE RUSSIAN CONTROL SYSTEM FOR TOPAZ II;212
36.5;5. THE US CONTROL SYSTEM DEVELOPMENT EFFORT;213
36.6;6. CONCLUSIONS;214
36.7;7. ACKNOWLEDGMENTS;214
36.8;8. REFERENCES;214
37;CHAPTER 31. AUTONOMOUS NEURAL CONTROL IN SPACE STRUCTURAL PLATFORMS;216
37.1;1. CONNECTIONIST SYSTEM;216
37.2;2. ADAPTIVE TIME-DELAY RBF;217
37.3;3. EIGENSTRUCTURE BAM;218
37.4;4. FAULT DIAGNOSIS;219
37.5;5. RECONFIGURABLE CONTROL;220
37.6;6. SIMULATION STUDIES;220
37.7;7. CONCLUSION;221
37.8;8. REFERENCES;221
38;CHAPTER 32. SPACE INTEGRATED CONTROLS EXPERIMENT (SPICE);222
38.1;1. INTRODUCTION;222
38.2;2. THE TESTBED;222
38.3;3. CONTROL SYSTEM DESIGN PROCESS;223
38.4;4. CONTROL SYSTEM IMPLEMENTATION;226
38.5;5. TEST EXECUTION AND RESULTS;226
38.6;6. CONCLUSIONS;227
38.7;7. REFERENCES;227
39;CHAPTER 33. SPACE STRUCTURE CONTROL USING MULTIPLE MODEL ADAPTIVE ESTIMATION AND CONTROL;228
39.1;1. INTRODUCTION;228
39.2;2. STRUCTURE;228
39.3;3. SYSTEM MODEL;229
39.4;4. MMAE/MMAC;229
39.5;5. RESULTS;232
39.6;6. Summary;233
39.7;7. References;233
40;CHAPTER 34. REPOSITIONING MANEUVERS FOR CIRCULAR ORBITS USING CONSTANT THRUST;234
40.1;1. INTRODUCTION;234
40.2;2. NOMENCLATURE;234
40.3;3. EQUATIONS OF MOTION;235
40.4;4. ANALYTIC SOLUTION FOR TANGENTIAL THRUSTING WITH MASS FLOW;235
40.5;5. OPTIMAL CONTROL FORMULATION;236
40.6;6. EVALUATION OF THE OPTIMAL STATION CHANGE;237
40.7;7. CONCLUSION;239
40.8;8. REFERENCES;239
41;CHAPTER 35. Development of On-orbit Predictions for the Middeck Active Control Experiment;240
41.1;1 INTRODUCTION;240
41.2;2 MACE;240
41.3;3 Discussion of Results;243
41.4;4 Conclusions;245
41.5;References;245
42;CHAPTER 36. DEMONSTRATION OF A VIBRATION SUPPRESSION SYSTEM FOR THE SPACE STATION;246
42.1;1. INTRODUCTION;246
42.2;2. EXPERIMENTAL SETUP;246
42.3;3. VSSM CONTROL SYSTEM DESCRIPTION;247
42.4;4. VSS TEST RESULTS;249
42.5;5. CONCLUSIONS;250
42.6;6. REFERENCES;250
43;CHAPTER 37. MULTIVARIABLE ACTIVE FLUTTER SUPPRESSION SYSTEMS USING H8 CONTROL AND LQG WITH FREQUENCY-DEPENDENT WEIGHT SYNTHESES;252
43.1;1. INTRODUCTION;252
43.2;2. H8 CONTROL SYNTHESIS;252
43.3;3. FWLQG SYNTHESIS;253
43.4;4. DESIGNS OF NAL-AFS CONTROL SYSTEMS;255
43.5;5. CONCLUDING REMARKS;257
43.6;6. Acknowledgement;257
43.7;7. REFERENCES;257
44;CHAPTER 38. OPTIMAL SENSOR PLACEMENT FOR IDENTIFICATION OF LARGE FLEXIBLE SPACE STRUCTURES;258
44.1;1. INTRODUCTION;258
44.2;2. OBJECTIVE;258
44.3;3. EXPERIMENTAL FLEXIBLE STRUCTURE;258
44.4;4. SENSOR PLACEMENT ALGORITHM;259
44.5;5. SENSOR PLACEMENT APPLICATION;260
44.6;6. EXPERIMENTAL RESULTS;261
44.7;7. EXTENSION TO VIBRATION SUPPRESSION AND CONTROL;263
44.8;8. CONCLUSION;263
44.9;9. ACKNOWLEDGMENTS;263
44.10;10. REFERENCES;263
45;CHAPTER 39. H8 CONTROL OF A NONLINEAR SYSTEM USING SIMPLICIAL ALGORITHMS;264
45.1;1. INTRODUCTION;264
45.2;2. NONLINEAR H8 CONTROL SYNTHESIS;265
45.3;3. STABILITY ANALYSIS;265
45.4;4. CONCLUSION;269
45.5;5. REFERENCES;269
46;CHAPTER 40. IMPROVED ROBUSTNESS FOR DYNAMIC INVERSION BASED NONLINEAR FLIGHT CONTROL LAWS;270
46.1;1. INTRODUCTION;270
46.2;2. ROBUSTNESS AND PERFORMANCE OF A FIRST-ORDER INVERSION CONTROLLER;271
46.3;4. PROPORTIONAL + INTEGRAL FEEDBACK;271
46.4;5. SIMULATIONS;272
46.5;6. CONCLUSIONS;273
46.6;7. ACKNOWLEDGEMENTS;273
46.7;8. REFERENCES;273
47;CHAPTER 41. MINIMAL TIME CHANGE DETECTION ALGORITHM FOR RECONFIGURABLE CONTROL SYSTEM AND APPLICATION TO AEROSPACE;276
47.1;1. INTRODUCTION;276
47.2;2. MINIMAL TIME CHANGE DETECTION ALGORITHM;277
47.3;3 . SIMULATIONS AND RESULTS;279
47.4;4. CONCLUSIONS;280
47.5;5. REFERENCES;281
48;CHAPTER 42. ROBUST FLIGHT CONTROL DESIGN WITH RESPECT TO DELAYS AND CONTROL EFFICIENCIES;282
48.1;1. INTRODUCTION;282
48.2;2. PRELIMINARIES AND NOTATIONS;283
48.3;3. DESCRIPTION OF THE METHOD;283
48.4;4. ALGORITHM;284
48.5;5. APPLICATION: SYNTHESIS OF A LATERAL ROBUST AUTOPILOT AT LANDING;285
48.6;6. CONCLUSION;287
48.7;7. REFERENCES;287
49;CHAPTER 43. Theory and Weighting Strategies of Mixed Sensitivity H8 Synthesis on a Class of Aerospace Applications 1;288
49.1;1. INTRODUCTION;288
49.2;2. H8 MIXED-SENSITIVITY APPROACH;289
49.3;3. WEIGHTING STRATEGIES H8 FORMULATION;290
49.4;4. DESIGN EXAMPLES;291
49.5;5. CONCLUSION;293
49.6;ACKNOWLEDGEMENT;293
49.7;REFERENCES;293
50;CHAPTER 44. SPACE STATION SOLAR ARRAY BETA GIMBAL NONCOLOCATED CONTROL STUDY;294
50.1;1. INTRODUCTION;294
50.2;2. MATHEMATICAL PRELIMINARIES;295
50.3;3. BETA GIMBAL CONTROL SYSTEM;295
50.4;4. DYNAMIC EMBEDDING;296
50.5;5. RESULTS;297
50.6;6. CONCLUSIONS;298
50.7;References;298
51;CHAPTER 45. EFFECTS OF RCS FIRING CONSTRAINTS ON THE REMOTE MANIPULATOR SYSTEM OF THE SPACE STATION;300
51.1;1. INTRODUCTION;300
51.2;2. MODELING;300
51.3;3. JET FIRING WAITING PERIOD CONSTRAINT APPROACH;301
51.4;4. JET IMPULSE CONSTRAINT APPROACH;301
51.5;5. CONCLUSIONS;302
51.6;6. REFERENCES;302
52;CHAPTER 46. HST: PRE-SERVICING MISSION OVERVIEW AND SERVICING MISSION RESULTS;306
52.1;1. INTRODUCTION;306
52.2;2. HST BACKGROUND;306
52.3;3. PRE-SERVICING MISSION STATUS;308
52.4;4. HST FIRST SERVICING MISSION;309
52.5;5. POST-SERVICING MISSION PERFORMANCE;310
52.6;6. CONCLUSION;311
52.7;7. REFERENCES;311
53;CHAPTER 47. GUIDANCE, NAVIGATION AND CONTROL SYSTEM IN ENGINEERING TEST SATELLITE VIIRENDEZ-VOUS AND DOCKING EXPERIMENT;312
53.1;1. Introduction;312
53.2;2. Mission Overview;313
53.3;3. RVD Subsystem Design;313
53.4;4. Requirements to the System;315
53.5;5. RVD Component Specifications;316
53.6;6. Rendezvous Docking Test Facility;317
53.7;SUMMARY;317
53.8;REFERENCES;317
54;CHAPTER 48. CONTROL SYSTEM FOR A BALLOON-BORNE TRACKING AND POINTING EXPERIMENT;318
54.1;1. INTRODUCTION;318
54.2;2. BALLOON ATP EXPERIMENTS;318
54.3;3. CONTROL REQUIREMENTS;319
54.4;4. HABE SUBSYSTEMS;319
54.5;5. ERROR BUDGET;322
54.6;6. HABE SIMULATION;322
54.7;7. CONCLUSION;322
54.8;8. REFERENCES;322
55;CHAPTER 49. RELATIVITY MISSION SPACECRAFT CONTROL SYSTEM;324
55.1;1. INTRODUCTION;324
55.2;2 . ATTITUDE CONTROL;326
55.3;3. TRANSLATION CONTROL;327
55.4;4. ORBIT TRIM CONTROL;327
55.5;5. DEWAR PRESSURE CONTROL;327
55.6;6. SAFEMODE;327
55.7;7. HELIUM THRUSTER;328
55.8;8. ACKNOWLEDGMENT;329
55.9;9. REFERENCE;329
56;CHAPTER 50. NEW CONTROL LAWS FOR THE ATTITUDE STABILIZATION OF RIGID BODIES;330
56.1;1 INTRODUCTION;330
56.2;2 EQUATIONS OF MOTION;331
56.3;3 STABILIZING CONTROLLERS;331
56.4;4 CONCLUDING REMARKS;335
56.5;5 REFERENCES;335
57;CHAPTER 51. COEFFICIENT DIAGRAM METHOD AS APPLIED TO THE ATTITUDE CONTROL OF CONTROLLED-BIAS-MOMENTUM SATELLITE;336
57.1;1. INTRODUCTION;336
57.2;2. HISTORICAL BACKGROUND;336
57.3;3. CHARACTERISTIC POLYNOMIAL;337
57.4;4. COMPARISON OF CONTROL LAWS;339
57.5;5. CONCLUSIONS;341
57.6;6. REFERENCES;341
58;CHAPTER 52. AN INTELLIGENT CONTROLLER ARCHITECTURE FOR MISSILE THRUST VECTOR CONTROL;342
58.1;1. INTRODUCTION;342
58.2;2. GOVERNING EQUATIONS;342
58.3;3. AN INTELLIGENT CONTROLLER ARCHITECTURE;345
58.4;4. COMPUTER SIMULATION;345
58.5;5. CONCLUSIONS;345
58.6;6. REFERENCES;347
59;CHAPTER 53. AUTONOMOUS GUIDANCE FOR THE RECOVERY AND LANDING OF A REMOTELY PILOTED VEHICLE;348
59.1;1. INTRODUCTION;348
59.2;2. APPROACH;348
59.3;3. NUMERICAL RESULTS;352
59.4;4. CONCLUSION;353
59.5;5. REFERENCES;353
60;CHAPTER 54. TOPOLOGICAL TASK SPACE MODELLING FOR AUTONOMOUS SPACE ROBOT ACTION PLANNING;354
60.1;1. INTRODUCTION;354
60.2;2. EXAMPLE AND PROBLEM STATEMENT;354
60.3;3. RELATED WORK;355
60.4;4. TASK-SPACE MODELLING;358
60.5;5. MODELLING ONLINE RESTRICTIONS;363
60.6;6. CONCLUSION;363
60.7;7. ACKNOWLEDGEMENT;364
60.8;8. APPENDIX;364
60.9;9. REFERENCES;365
61;CHAPTER 55. Regulation Layer Controller Design for Automated Highway System: Platoon Merge and Split Controller Design;366
61.1;1. INTRODUCTION;366
61.2;2. LONGITUDINAL VEHICLE MODEL;367
61.3;3. REGULATION LAYER CONTROLLER DESIGN;367
61.4;4. Simulation Results;369
61.5;5. Conclusion;370
61.6;5. REFERENCES;370
62;CHAPTER 56. NOVEL ARCHITECTURE FOR AUTONOMOUS GENERATION AND MANAGEMENT OF MOVEMENT PLANS OF PLANETARY ROVERS;372
62.1;1. INTRODUCTION;372
62.2;2. PLAN MANAGEMENT SYSTEM;373
62.3;3. NAVIGATION AND PATH PLANNING;376
62.4;4. CONCLUSIONS;377
62.5;REFERENCES;377
63;CHAPTER 57. NEURAL NETWORK FOR POSITIONING SPACE STATION SOLAR ARRAYS;378
63.1;NOMENCLATURE;378
63.2;INTRODUCTION;378
63.3;APPROACH MODEL;378
63.4;NEURAL NETWORK SOLUTION;380
63.5;CONCLUSIONS;380
63.6;REFERENCES;382
64;CHAPTER 58. RADIAL BASIS FUNCTION AND WAVELET NEURAL NETWORKS FOR FEATHERING THE SOLAR ARRAYS;384
64.1;1. INTRODUCTION;384
64.2;2. RBF NETWORKS;384
64.3;3. WAVELET NETWORKS;385
64.4;4. TRAINING DATA;386
64.5;5. NETWORK DESIGN;386
64.6;6. CONCLUSIONS;389
64.7;REFERENCES;389
65;CHAPTER 59. NONLINEAR CONTROL OF HIGH PERFORMANCE AIRCRAFT USING ADAPTIVE PARTIAL GAUSSIAN NETWORKS;390
65.1;1. Introduction;390
65.2;2. Dynamic Inverse Based Control;391
65.3;3. Adaptive Network Approximation of Plant Inverse;391
65.4;4. Controller Design;392
65.5;5. Stability Proof and Adaptation Laws;393
65.6;7. Design Example;393
65.7;8. Conclusions;395
65.8;References;395
66;CHAPTER 60. Aircraft Anti-lock Brake System (ABS) with Fuzzy Logic Control;396
66.1;1. INTRODUCTION;396
66.2;2. FUZZY LOGIC CONTROLLER;396
66.3;3. ABS DYNAMICS AND FLC;399
66.4;4. CONCLUSION;401
66.5;5. REFERENCES;401
67;CHAPTER 61. LQG and Feedforward Controllers for the Deep Space Network Antennas;402
67.1;1. INTRODUCTION;402
67.2;2. TRAJECTORY PREPROCESSOR;402
67.3;3. LQG CONTROLLER;403
67.4;4. FEEDFORWARD CONTROLLER;404
67.5;5. LQG-AND-FEEDFORWARD CONTROLLER;405
67.6;6. PERFORMANCE EVALUATION;406
67.7;7. CONCLUSIONS;406
67.8;ACKNOWLEDGMENTS;407
67.9;8. REFERENCES;407
68;CHAPTER 62. An Optimal Thruster Configuration Design and Evaluation For Quick STEP;408
68.1;1. INTRODUCTION;408
68.2;2. THRUSTER CONTROL METHODS;409
68.3;3. NORMALIZED MINIMUM CONTROL AUTHORITY AND MARGIN OF SAFETY;411
68.4;4. OPTIMAL SEARCH METHOD AND SOME EXAMPLES;412
68.5;7. CONCLUSIONS;413
68.6;8. ACKNOWLEDGMENT;413
68.7;REFERENCE;413
69;CHAPTER 63. SLIDING MODE ESTIMATION SCHEME FOR MISSILE HOMING GUIDANCE;414
69.1;1 INTRODUCTION;414
69.2;2 SLIDING OBSERVERS;415
69.3;3 TARGET MANEUVER ESTIMATOR;416
69.4;4 SIMULATION RESULTS;417
69.5;5 CONCLUSIONS;418
69.6;6 REFERENCES;418
70;CHAPTER 64. DEXTEROUS MANIPULATION IN SPACE : COMPARISON BETWEEN SERIAL AND PARALLEL CONCEPTS;420
70.1;1. INTRODUCTION;420
70.2;2. GENERAL FRAMEWORK;421
70.3;3. SERIAL CONCEPT;421
70.4;4. PARALLEL CONCEPT;423
70.5;5. CONCLUSION;425
70.6;6. REFERENCES;425
71;CHAPTER 65. ADAPTIVE PERTURBATION CONTROL OF AN UNSTABLE PLANT USING SIMPLICIAL STABILITY ANALYSIS;428
71.1;1. SYSTEM MODEL;428
71.2;2. CONTROLLER IMPLEMENTATION;429
71.3;3. ANALYSIS VIA SIMPLICIAL ALGORITHMS;430
71.4;4. CONCLUSION;432
71.5;5. REFERENCES;433
72;CHAPTER 66. ROBUST FLIGHT CONTROL DESIGN FOR A HIGHLY FLEXIBLE AIRCRAFT BY POLE MIGRATION;434
72.1;1. INTRODUCTION;434
72.2;2. PRELIMINARIES AND NOTATIONS;434
72.3;3. DESCRIPTION OF THE METHOD;436
72.4;4. APPLICATION;437
72.5;5. CONCLUSION;439
72.6;6. REFERENCES;439
73;CHAPTER 67. MIXED H2 / µ OPTIMIZATION;440
73.1;1. INTRODUCTION;440
73.2;2. MIXED H2/H8 OPTIMAL CONTROL;440
73.3;3. MIXED H2/µ;441
73.4;4. ROBUST PERFORMANCE USING H2/µ;442
73.5;5. NUMERICAL APPROACH;443
73.6;6. EXAMPLE;443
73.7;7. CONCLUSIONS;445
73.8;REFERENCES;445
74;AUTHOR INDEX;446