Buch, Englisch, 567 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1033 g
Advanced Methods, Decision Support Tools and Real-World Applications
Buch, Englisch, 567 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1033 g
ISBN: 978-3-030-05644-5
Verlag: Springer International Publishing
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments. Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet ofThings. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik Zuverlässigkeitstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
Weitere Infos & Material
Introduction.- Predictive Maintenance and (Early) FDD in Dynamic Systems.- Beyond State-of-the-Art.- Early Fault Detection and Diagnosis Approaches.- Prognostics and Forecasting.- Self-Reaction and Self-Healing Techniques.- Applications of Predictive Maintenance with emphasize on Industry 4.0 challenges.- Conclusion.




