Buch, Englisch, 358 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 540 g
An Artificial Intelligence Paradigm - Volume 2: Genetics and Clinical Applications
Buch, Englisch, 358 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 540 g
ISBN: 978-0-443-18509-0
Verlag: Elsevier Science
Radiomics and Radiogenomics in Neuro-Oncology: An Artificial Intelligence Paradigm-Volume 2: Genetics and Clinical Applications provides readers with a broad and detailed framework for radiomics and radiogenomics (R-n-R) approaches with AI in neuro-oncology. It delves into the study of cancer biology and genomics, presenting methods and techniques for analyzing these elements. The book also highlights current solutions that R-n-R can offer for personalized patient treatments, as well as discusses the limitations and future prospects of AI technologies. Volume 1: Radiogenomics Flow Using Artificial Intelligence covers the genomics and molecular study of brain cancer, medical imaging modalities and their analysis in neuro-oncology, and the development of prognostic and predictive models using radiomics. Volume 2: Genetics and Clinical Applications extends the discussion to imaging signatures that correlate with molecular characteristics of brain cancer, clinical applications of R-n-R in neuro-oncology, and the use of Machine Learning and Deep Learning approaches for R-n-R in neuro-oncology.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Section 1: Imaging signatures for brain cancer molecular characteristics 1. Isocitrate Dehydrogenase Mutations (IDH) 2. TP53 Mutations 3. ATRX Loss 4. MGMT (O6-Methylguanine-DNA-Methyltransferase Methylation) gene 5. EGFR (Epidermal Growth Factor Receptor) 6. Other mutations Section 2: Clinical applications of R-n-R in Neuro-Oncology 7. Risk Stratification 8. Survival Prediction 9. Heterogeneity Analysis 10: Early and Accurate Prognosis Section 3: Radiogenomics studies for different brain cancer types 11. Glioblastoma 12. Astrocytoma 13. CNS lymphoma 14. Others brain cancers: Meningioma, Acoustic neuroma, Haemangioblastoma Section 4: AI in R-n-R for Neuro-Oncology: What we have achieved so Far? 15. A Survey on recent advancement of AI-enabled R-n-R in neuro-oncology 16. Prospects and advances in R-n-R 17. Progress and future aspects 18. Limitations of AI in R-n-R study