Buch, Englisch, Band 5, 153 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 264 g
Reihe: Karlsruhe series on intelligent sensor-actuator-systems
Buch, Englisch, Band 5, 153 Seiten, PB, Format (B × H): 148 mm x 210 mm, Gewicht: 264 g
Reihe: Karlsruhe series on intelligent sensor-actuator-systems
ISBN: 978-3-86644-370-9
Verlag: Karlsruher Institut für Technologie
In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.