Buch, Englisch, 216 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 360 g
What Non-Technical Executives Don't Know About Data and Why It's Urgent They Find Out
Buch, Englisch, 216 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 360 g
ISBN: 978-1-032-28076-9
Verlag: Routledge
- What are the characteristics of high-quality data?
- How do you get from bad data to good data?
- What procedures and practices ensure high-quality data?
- How do you know whether your data supports the decisions you need to make?
This clear and valuable resource will appeal to C-suite executives and top-line managers across industries, as well as business analysts at all career stages and data analytics students.
Zielgruppe
Adult education, Postgraduate, and Professional
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Management Entscheidungsfindung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Wirtschaftswissenschaften Betriebswirtschaft Management Wissensmanagement
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
1 Preface. 2 Data – Introduction. 3 The Many Facets of Data. 3.1 Basic Concepts. 3.2 Basic Terms and Terminology. 4 Domain Specific Topics. 4.1 Data Governance. 4.2 Data Architecture. 4.3 Databases. 4.4 Master Data and Master Data Management. 4.5 Metadata and Metadata Management. 4.6 Data Quality. 4.7 Null Values. 4.8 Data Modeling and Design. 4.9 Data Integration and Interoperability. 4.10 Data Security. 4.11 Data at Rest and Data in Motion. 4.12 Data Wrangling and Data Storage. 5 Data: Past, Present and Future. 5.1 Data – The Past. 5.2 Data – The Present. 5.3 Data – The Future. 6 The New Reality. 7 Data – Use Cases.8 To Sum Up. 9 Data – Optimization. 10 Epilog