Buch, Englisch, 209 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers
Buch, Englisch, 209 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Theoretical Computer Science and General Issues
ISBN: 978-3-540-34137-6
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
Weitere Infos & Material
Invited Contributions.- Discrete Component Analysis.- Overview and Recent Advances in Partial Least Squares.- Random Projection, Margins, Kernels, and Feature-Selection.- Some Aspects of Latent Structure Analysis.- Feature Selection for Dimensionality Reduction.- Contributed Papers.- Auxiliary Variational Information Maximization for Dimensionality Reduction.- Constructing Visual Models with a Latent Space Approach.- Is Feature Selection Still Necessary?.- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data.- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery.- A Simple Feature Extraction for High Dimensional Image Representations.- Identifying Feature Relevance Using a Random Forest.- Generalization Bounds for Subspace Selection and Hyperbolic PCA.- Less Biased Measurement of Feature Selection Benefits.