Satoh / Vadicamo / Zimek | Similarity Search and Applications | Buch | 978-3-030-60935-1 | sack.de

Buch, Englisch, 414 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

Satoh / Vadicamo / Zimek

Similarity Search and Applications

13th International Conference, SISAP 2020, Copenhagen, Denmark, September 30 - October 2, 2020, Proceedings

Buch, Englisch, 414 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

ISBN: 978-3-030-60935-1
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 13th International Conference on Similarity Search and Applications, SISAP 2020, held in Copenhagen, Denmark, in September/October 2020. The conference was held virtually due to the COVID-19 pandemic.

The 19 full papers presented together with 12 short and 2 doctoral symposium papers were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections named: scalable similarity search; similarity measures, search, and indexing; high-dimensional data and intrinsic dimensionality; clustering; artificial intelligence and similarity; demo and position papers; and doctoral symposium.

Satoh / Vadicamo / Zimek Similarity Search and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Scalable Similarity Search.- Accelerating Metric Filtering by Improving Bounds on Estimated Distances.- Differentially Private Sketches for Jaccard Similarity Estimation.- Pivot Selection for Narrow Sketches by Optimization Algorithms.- mmLSH: A Practical and Efficient Technique for Processing Approximate Nearest Neighbor Queries on Multimedia Data.- Parallelizing Filter-Verification based Exact Set Similarity Joins on Multicores.- Similarity Search with Tensor Core Units.- On the Problem of p1 in Locality-Sensitive Hashing.- Similarity Measures, Search, and Indexing.- Confirmation Sampling for Exact Nearest Neighbor Search.- Optimal Metric Search Is Equivalent to the Minimum Dominating Set Problem.- Metrics and Ambits and Sprawls, Oh My: Another Tutorial on Metric Indexing.- Some branches may bear rotten fruits: Diversity browsing VP-Trees.- Continuous Similarity Search for Evolving Database.- Taking advantage of highly-correlated attributes in similarity queries with missing values.- Similarity Between Points in Metric Measure Spaces.- High-dimensional Data and Intrinsic Dimensionality.- GTT: Guiding the Tensor Train Decomposition.- Noise Adaptive Tensor Train Decomposition for Low-Rank Embedding of Noisy Data.- ABID: Angle Based Intrinsic Dimensionality.- Sampled Angles in High-Dimensional Spaces.- Local Intrinsic Dimensionality III: Density and Similarity.- Analysing Indexability of Intrinsically High-dimensional Data using TriGen.- Reverse k-Nearest Neighbors Centrality Measures and Local Intrinsic Dimension.- Clustering.- BETULA: Numerically Stable CF-Trees for BIRCH Clustering.- Using a Set of Triangle Inequalities to Accelerate K-means Clustering.- Angle-Based Clustering.- Artificial Intelligence and Similarity.- Improving Locality Sensitive Hashing by Efficiently Finding Projected Nearest Neighbors.- SIR: Similar Image Retrieval for Product Search in E-Commerce.- Cross-Resolution deep features based Image Search.- LearningDistance Estimators from Pivoted Embeddings of Metric Objects.- Demo and Position Papers.- Visualizer of Dataset Similarity using Knowledge Graph.- vitrivr-explore: Guided Multimedia Collection Exploration for Ad-hoc Video Search.- Running experiments with confidence and sanity.- Doctoral Symposium.- Temporal Similarity of Trajectories in Graphs.- Relational Visual-Textual Information Retrieval.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.