Satapathy / Cambria / Hussain | Sentiment Analysis in the Bio-Medical Domain | E-Book | sack.de
E-Book

E-Book, Englisch, Band 7, 134 Seiten, eBook

Reihe: Socio-Affective Computing

Satapathy / Cambria / Hussain Sentiment Analysis in the Bio-Medical Domain

Techniques, Tools, and Applications
1. Auflage 2017
ISBN: 978-3-319-68468-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Techniques, Tools, and Applications

E-Book, Englisch, Band 7, 134 Seiten, eBook

Reihe: Socio-Affective Computing

ISBN: 978-3-319-68468-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The abundance of text available in social media and health-related forums and blogs have recently attracted the interest of the public health community to use these sources for opinion mining. This book presents a lexicon-based approach to sentiment analysis in the bio-medical domain, i.e., WordNet for Medical Events (WME). This book gives an insight in handling unstructured textual data and converting it to structured machine-processable data in the bio-medical domain.

The readers will discover the following key novelties:

1) development of a bio-medical lexicon: WME expansion and WME enrichment with additional features.;

2) ensemble of machine learning and computational creativity;

3) development of microtext analysis techniques to overcome the inconsistency in social communication.

It will be of interest to researchers in the fields of socially-intelligent human-machine interaction and biomedical text mining
Satapathy / Cambria / Hussain Sentiment Analysis in the Bio-Medical Domain jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


IntroductionSentiment Analysis Common Tasks in Web Minig 
Computational Creativity
Biomedical text mining
The Problem of Sentiment Analysis
Literature Survey 
Philosophy and Sentiments
Importance of Common Sense
Medical LexiconsDifferent Levels of Analysis Microtext Analysis Sentic Patterns Semantic Parsing Linguistic RulesELM Classifier Evaluation 
SenticNet 17 Knowledge Acquisition 18 Knowledge Representation 19 Knowledge-Based Reasoning 
Contribution to Sentiment Analysis
20 Computation Creativity and Machine Learning 21 Extending Wordnet for Medical Events 22 Sentiment Extraction from Medical concepts/words23 Addition of ConceptNet in WME 24 Semantic Network (SemNet) preparation
Conclusion and Future Work
25 Summary of Contributions 
26 Deep Learning and its Applicaion in Medical Domain27 Sentiment Analysis in Stock Market 
Index


Mr. Ranjan Satapathy is currently pursuing Ph.D., at the School of Computer Science and Engg., NTU Singapore under the supervision of Dr. Erik Cambria. His major research interests are deep learning, sentiment analysis and natural language processing.

He completed his Bachelor's degree in Computer Science and Engg., from IIIT-Bhubaneswar, India in 2013. He further recieved a M.Tech degree from  University of Hyderabad, India in 2016, with majors in Computer Science. During his pursuits of Master's degree, he joined Dr. Cambria's research group SenticNet as an intern, where he worked on bio-medical sentiment analysis. This exposure and a keen-to-learn attitude motivated him to apply for Ph.D under Dr. Cambria.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.