Sanz / Hinkle / Jain | Radon and Projection Transform-Based Computer Vision | E-Book | sack.de
E-Book

E-Book, Englisch, Band 16, 123 Seiten, eBook

Reihe: Springer Series in Information Sciences

Sanz / Hinkle / Jain Radon and Projection Transform-Based Computer Vision

Algorithms, A Pipeline Architecture, and Industrial Applications

E-Book, Englisch, Band 16, 123 Seiten, eBook

Reihe: Springer Series in Information Sciences

ISBN: 978-3-642-73012-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book deals with novel machine vision architecture ideas that make real-time projection-based algorithms a reality. The design is founded on raster-mode processing, which is exploited in a powerful and flexible pipeline. We concern ourselves with several image analysis algorithms for computing: projections of gray-level images along linear patterns (i. e. , the Radon transform) and other curved contours; convex hull approximations; the Hough transform for line and curve detection; diameters; moments and principal components, etc. Addition ally, we deal with an extensive list of key image processing tasks, which involve generating: discrete approximations of the inverse Radon transform operator; computer tomography reconstructions; two-dimensional convolutions; rotations and translations; multi-color digital masks; the discrete Fourier transform in polar coordinates; autocorrelations, etc. Both the image analysis and image processing algorithms are supported by a similar architecture. We will also of some of the above algorithms to the solution of demonstrate the applicability various industrial visual inspection problems. The algorithms and architectural ideas surveyed here unleash the power of the Radon and other non-linear transformations for machine vision applications. We provide fast methods to transform images into projection space representa tions and to backtrace projection-space information into the image domain. The novelty of this approach is that the above algorithms are suitable for implementa tion in a pipeline architecture. Specifically, random access memory and other dedicated hardware components which are necessary for implementation of clas sical techniques are not needed for our algorithms.
Sanz / Hinkle / Jain Radon and Projection Transform-Based Computer Vision jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction.- 1.1 Machine Vision Architectures.- 1.2 The Radon Transform and the PPPE Architecture.- 2. Model and Computation of Digital Projections.- 2.1 Representation of Digital Lines.- 2.2 Generation of Projection Data.- 2.3 Noise Considerations.- 3. Architectures.- 3.1 The Contour Image Generator.- 3.2 The Projection Data Collector.- 3.3 Additional Hardware.- 3.4 Putting It All Together: P3E.- 3.5 Implementation in Commercially Available Pipelines.- 4. Projections Along General Contours.- 5. P3E-Based Image Analysis Algorithms and Techniques.- 5.1 Computing Convex Hulls, Diameters, Enclosing Boxes, Principal Components, and Related Features.- 5.2 Computing Hough Transforms for Line and Curve Detection.- 5.3 Generating Polygonal Masks.- 5.4 Generating Multi-Colored Masks.- 5.5 Non-Linear Masks.- 6. P3E-Based Image Processing Algorithms and Techniques.- 6.1 Non-iterative Reconstruction.- 6.2 Iterative Reconstruction.- 6.3 Two-Dimensional Convolution.- 6.4 Rotation and Translation.- 6.5 Computerized Tomography Reconstruction.- 6.6 Autocorrelation.- 6.7 Polar Fourier Transform and Object Classification.- 7. Radon Transform Theory for Random Fields and Optimum Image Reconstruction from Noisy Projections.- 7.1 Radon Transform Theory of Random Fields.- 7.2 Optimum Reconstruction from Noisy Projections.- 8. Machine Vision Techniques for Visual Inspection.- 9. Conclusion.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.