Sanz | Advances in Machine Vision | Buch | 978-0-387-96822-3 | sack.de

Buch, Englisch, 420 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1730 g

Reihe: Springer Series in Perception Engineering

Sanz

Advances in Machine Vision

Buch, Englisch, 420 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1730 g

Reihe: Springer Series in Perception Engineering

ISBN: 978-0-387-96822-3
Verlag: Springer


Machine Vision technology is becoming an indispensible part of the manufacturing industry. Biomedical and scientific applications of machine vision and imaging are becoming more and more sophisticated, and new applications continue to emerge. This book gives an overview of ongoing research in machine vision and presents the key issues of scientific and practical interest. A selected board of experts from the US, Japan and Europe provides an insight into some of the latest work done on machine vision systems and appliccations.
Sanz Advances in Machine Vision jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Active Optical Range Imaging Sensors.- 1 Introduction.- 2 Preliminaries.- 3 Imaging Radars.- 4 Active Triangulation.- 5 Moire and Holographic Interferometry.- 6 Focusing.- 7 Fresnel Diffraction.- 8 Sensor Comparisons.- 9 Emerging Themes.- Acknowledgments.- References.- 2 3-D Structures from 2-D Images.- 1 Introduction.- 2 Depth from Stereopsis.- 3 Structure from Motion.- 4 Structure from Optical Flow.- 5 Shape from Shading.- 6 Shape from Texture and Surface Contours.- 7 Shape from Line Drawings.- 8 Shape from Occluding Contours.- 9 Structure from Volume Intersection.- 10 Shape from Spatial Encoding.- 11 Concluding Remarks.- Acknowledgments.- References.- 3 3-D Sensing for Industrial Computer Vision.- 1 Introduction.- 2 Passive Techniques.- 3 Active Techniques.- 4 Conclusion.- References.- 4 Methodology for Automatic Image-Based Inspection of Industrial Objects.- 1 Introduction.- 2 Inspection Process.- 3 General Approach.- 4 Development, Testing, and Validation.- 5 Development and Simulation System.- 6 Comments and Developmental Experiences.- 7 Suggested Future Enhancements.- Acknowledgments.- References.- 5 A Design Data-Based Visual Inspection System for Printed Wiring.- 1 Introduction.- 2 CAD Data-Based Inspection.- 3 An Inspection System Based on CAD Data-Based Pattern Verification.- 4 Reference Data.- 5 Image Acquisition.- 6 Data Conversion.- 7 Alignment Error Determination.- 8 Defect Detection.- 9 Defect Analysis.- 10 Test Material.- 11 System Performance.- 12 Summary and Conclusions.- Acknowledgments.- References.- 6 Extracting Masks from Optical Images of VLSI Circuits.- 1 Introduction.- 2 A Multilayer Translucent Scene Model.- 3 Natural Constraints.- 4 Relaxation Scheme.- 5 Path-Tracing Algorithm.- 6 Expanded Blocks World.- 7 Conclusion.- Acknowledgments.- References.- 7 Control-Free Low-Level Image Segmentation: Theory, Architecture, and Experimentation.- 1 Introduction.- 2 Polynomial Classifiers.- 3 Knowledge Representation by Training Sets.- 4 Image Segmentation.- 5 Architectural Aspects.- 6 Applications.- 7 Conclusions.- References.- Appendix A.- Appendix B.- 8 Computer Vision: Algorithms and Architectures.- 1 Introduction.- 2 Connectivity Analysis.- 3 The Hough Transform.- 4 Stereo Analysis.- 5 Conclusions.- References.- 9 Image Understanding Architecture and Applications.- 1 Introduction.- 2 Architecture.- 3 Application Examples.- 4 Future Directions: High-Level Language Support.- 5 Summary.- References.- 10 IDATEN: A Reconfigurable Video-Rate Image Processor.- 1 Introduction.- 2 Architecture.- 3 IDATEN.- 4 Experiments and Results.- 5 Conclusion.- Acknowledgments.- References.- 11 Applying Iconic Processing in Machine Vision.- 1 Introduction.- 2 Iconic Processing.- 3 Morphological Operators for Iconic Processing.- 4 Architecture.- 5 Examples Using Morphological Operations.- 6 Rotation and Scale Changes.- 7 Conclusion and Discussion.- References.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.