Sander / Ester | Knowledge Discovery in Databases | Buch | 978-3-540-67328-6 | sack.de

Buch, Deutsch, 282 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

Sander / Ester

Knowledge Discovery in Databases

Techniken und Anwendungen
2000
ISBN: 978-3-540-67328-6
Verlag: Springer Berlin Heidelberg

Techniken und Anwendungen

Buch, Deutsch, 282 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 446 g

ISBN: 978-3-540-67328-6
Verlag: Springer Berlin Heidelberg


Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.

Sander / Ester Knowledge Discovery in Databases jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.