Sanchez / Loukianov / Alanís | Discrete-Time High Order Neural Control | Buch | 978-3-642-09695-2 | sack.de

Buch, Englisch, Band 112, 110 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g

Reihe: Studies in Computational Intelligence

Sanchez / Loukianov / Alanís

Discrete-Time High Order Neural Control

Trained with Kalman Filtering

Buch, Englisch, Band 112, 110 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-09695-2
Verlag: Springer


Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.
Sanchez / Loukianov / Alanís Discrete-Time High Order Neural Control jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Mathematical Preliminaries.- Discrete-Time Adaptive Neural Backstepping.- Discrete-Time Block Control.- Discrete-Time Neural Observers.- Discrete-Time Output Trajectory Tracking.- Real Time Implementation.- Conclusions and Future Work.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.