Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 450 g
Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 450 g
ISBN: 978-0-367-87787-3
Verlag: Taylor & Francis Ltd
Adsorption and desorption in solution play significant roles in separations, detoxification of waste streams, in purification, chromatography, heterogeneous catalysis, metabolism of medicinal drugs, and beyond. Metal-Organic Frameworks (MOFs) are well-ordered 3-dimensional hybrid organic-inorganic polymers which contain metal cations and the structure-building organic "linker" units. Mesoporous MOFs with pore sizes 2-50 nm are particularly suitable for adsorption and adsorption-based separations of large molecules of organic and bio-organic compounds.
Thousands of organic compounds and, in particular, aromatic and heterocyclic compounds are widely used as feedstock for industrial chemical synthesis, as fine chemicals, major components of liquid fossil fuels, dyestuffs, industrial solvents, agricultural chemicals, medicinal drugs, pharmaceuticals and personal care products (PPCPs), and active pharmaceutical ingredients (APIs). There is a strong interest towards synthesis, characterization and studies of both known and newly synthesized mesoporous MOFs for adsorption in solution to achieve the high adsorption capacity, selectivity, and the possibility of multiple regeneration of "spent" sorbent.
This book covers experimental fundamental research on using mesoporous MOFs in emerging applications of major industrial, environmental and academic importance, especially purification of water and liquid fossil fuels and in advanced biomedical technologies.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Contents
Preface
List of Illustrations
Chapter 1 – Introduction
Chapter 2 - Post-synthetic Modifications of Mesoporous MOFs for Adsorption-based Applications
2.1 Post-synthetic Modifications of MIL-101 for Adsorption and Catalysis in Solution
2.2 Post-synthetic Modifications of MIL-100 for Adsorption and Catalysis in Solution
2.3 The PSM of Mesoporous MOFs other than MIL-101 and MIL-100 for Applications Based on Adsorption
Chapter 3 - Mechanistic Studies of Activation of Mesoporous MOFs
Chapter 4 - Stability of Mesoporous MOFs in Water
4.1 Water Stability of MIL-101(Cr)
4.2 Water Stability of Chemically Modified MIL-101(Cr)
4.3 Water Stability of MIL-101(Fe), MIL-101(Al) and MIL-101(V)
4.4 Water Stability of MIL-100(Fe)
4.5 Water Stability of MIL-100(Cr)
4.6 Water Stability of MIL-100(Al)
4.7 Water Stability of Chemically Modified MIL-100
4.8 Water Stability of Mesoporous MOFs other than MIL-101 and MIL-100
Chapter 5 - Adsorption of Organic Dyes by Mesoporous MOFs in Water
5.1 Adsorption of Cationic Dyes on MIL-101
5.2 Adsorption of Cationic Dyes on MIL-100
5.3 Adsorption of Anionic Dyes on MIL-101
5.4 Adsorption of Anionic Dyes on MIL-100
Chapter 6 - Adsorption of Biologically Active Compounds on Mesoporous MOFs in Water
6.1 Adsorption of Small Molecule Medicinal Drugs on MIL-101
6.2 Adsorption of Small Molecule Medicinal Drugs on MIL-100
6.3 Adsorption of Biologically Active Organic Compounds on MIL-100, MIL-101 and Similar MOFs
6.4 Adsorption of Large Molecule Biologically Active Compounds on Miscellaneous Mesoporous MOFs
Chapter 7 - Adsorption of Miscellaneous Organic Compounds in Water
Chapter 8 - Adsorption of Inorganic Ions on Mesoporous MOFs from Water
Chapter 9 - Adsorption of Aromatic