Samoilenko | Elements of the Mathematical Theory of Multi-Frequency Oscillations | Buch | 978-94-010-5557-4 | sack.de

Buch, Englisch, Band 71, 313 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g

Reihe: Mathematics and its Applications

Samoilenko

Elements of the Mathematical Theory of Multi-Frequency Oscillations


Softcover Nachdruck of the original 1. Auflage 1991
ISBN: 978-94-010-5557-4
Verlag: Springer Netherlands

Buch, Englisch, Band 71, 313 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g

Reihe: Mathematics and its Applications

ISBN: 978-94-010-5557-4
Verlag: Springer Netherlands


Springer Book Archives

Samoilenko Elements of the Mathematical Theory of Multi-Frequency Oscillations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Periodic and quasi-periodic functions.- 1.1. The function spaces $$
C^r \left( {\mathcal{T}_m } \right)
$$
and $$
H^r \left( {\mathcal{T}_m } \right)
$$.- 1.2. Structure of the spaces $$
H^r \left( {\mathcal{T}_m } \right)
$$. Sobolev theorems.- 1.3. Main inequalities in $$
C^r \left( \omega \right)
$$.- 1.4. Quasi-periodic functions. The spaces $$
H^r \left( \omega \right)
$$.- 1.5. The spaces $$
H^r \left( \omega \right)
$$ and their structure.- 1.6. First integral of a quasi-periodic function.- 1.7. Spherical coordinates of a quasi-periodic vector function.- 1.8. The problem on a periodic basis in En.- 1.9. Logarithm of a matrix in $$C^l \left( {\mathcal{T}_m } \right)$$. Sibuja’s theorem.- 1.10. Gårding’s inequality.- 2. Invariant sets and their stability.- 2.1. Preliminary notions and results.- 2.2. One-sided invariant sets and their properties.- 2.3. Locally invariant sets. Reduction principle.- 2.4. Behaviour of an invariant set under small perturbations of the system.- 2.5. Quasi-periodic motions and their closure.- 2.6. Invariance equations of a smooth manifold and the trajectory flow on it.- 2.7. Local coordinates in a neighbourhood of a toroidal manifold. Stability of an invariant torus.- 2.8. Recurrent motions and multi-frequency oscillations.- 3. Some problems of the linear theory.- 3.1. Introductory remarks and definitions.- 3.2. Adjoint system of equations. Necessary conditions for the existence of an invariant torus.- 3.3. Necessary conditions for the existence of an invariant torus of a linear system with arbitrary non-homogeneity in $$
C\left( {\mathcal{T}_m } \right)
$$.- 3.4. The Green’s function. Sufficient conditions for the existence of an invariant torus.- 3.5. Conditions for the existence of an exponentially stable invariant torus.-3.6. Uniqueness conditions for the Green’s function and the properties of this function.- 3.7. Separatrix manifolds. Decomposition of a linear system.- 3.8. Sufficient conditions for exponential dichotomy of an invariant torus.- 3.9. Necessary conditions for an invariant torus to be exponentially dichotomous.- 3.10. Conditions for the $$C'\left( {\mathcal{T}_m } \right)$$-block decomposability of an exponentially dichotomous system.- 3.11. On triangulation and the relation between the $$C'\left( {\mathcal{T}_m } \right)$$)-block decomposability of a linear system and the problem of the extendability of an r-frame to a periodic basis in En.- 3.12. On smoothness of an exponentially stable invariant torus.- 3.13. Smoothness properties of Green’s functions, the invariant torus and the decomposing transformation of an exponentially dichotomous system.- 3.14. Galerkin’s method for the construction of an invariant torus.- 3.15. Proof of the main inequalities for the substantiation of Galerkin’s method.- 4. Perturbation theory of an invariant torus of a non¬linear system.- 4.1. Introductory remarks. The linearization process.- 4.2. Main theorem.- 4.3. Exponential stability of an invariant torus and conditions for its preservation under small perturbations of the system.- 4.4. Theorem on exponential attraction of motions in a neighbourhood of an invariant torus of a system to its motions on the torus.- 4.5. Exponential dichotomy of invariant torus and conditions for its preservation under small perturbations of the system.- 4.6. An estimate of the smallness of a perturbation and the maximal smoothness of an invariant torus of a non-linear system.- 4.7. Galerkin’s method for the construction of an invariant torus of a non-linear system of equations and its linearmodification.- 4.8. Proof of Moser’s lemma.- 4.9. Invariant tori of systems of differential equations with rapidly and slowly changing variables.- Author index.- Index of notation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.