Samatova / Hendrix / Jenkins | Practical Graph Mining with R | Buch | 978-1-4398-6084-7 | sack.de

Buch, Englisch, 496 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1180 g

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

Samatova / Hendrix / Jenkins

Practical Graph Mining with R


1. Auflage 2013
ISBN: 978-1-4398-6084-7
Verlag: Chapman and Hall/CRC

Buch, Englisch, 496 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1180 g

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

ISBN: 978-1-4398-6084-7
Verlag: Chapman and Hall/CRC


Discover Novel and Insightful Knowledge from Data Represented as a Graph
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs.

Hands-On Application of Graph Data Mining
Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks.

Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations
Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique.

Makes Graph Mining Accessible to Various Levels of Expertise
Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.

Samatova / Hendrix / Jenkins Practical Graph Mining with R jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


Introduction. An Introduction to Graph Theory. An Introduction to R. An Introduction to Kernel Functions. Link Analysis. Graph-Based Proximity Measures. Frequent Subgraph Mining. Cluster Analysis. Classification. Dimensionality Reduction. Graph-Based Anomaly Detection. Performance Metrics for Graph Mining Tasks. Introduction to Parallel Graph Mining. Index.


Nagiza F. Samatova is an associate professor of computer science at North Carolina State University and a senior research scientist at Oak Ridge National Laboratory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.