Buch, Englisch, 346 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 687 g
Buch, Englisch, 346 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 687 g
ISBN: 978-1-138-03855-4
Verlag: CRC Press
Domesticated crops are the result of artificial selection for particular phenotypes or, in some cases, natural selection for an adaptive trait. Plant traits can be identified through image-based plant phenotyping, a process that was, until recently, strenous and time-consuming. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques, using computer vision and imaging technologies. These methodologies provide an automated, non-invasive, and scalable mechanism by which to define and collect plant phenotypes. Beautifully illustrated, with numerous color images, the book focuses on phenotypes measured from individual plants under controlled experimental conditions, which are widely available in high-throughput systems.
Features:
- Presents methodologies for image processing, including data-driven and machine learning techniques for plant phenotyping.
- Features information on advanced techniques for extracting phenotypes through images and image sequences captured in a variety of modalities.
- Includes real-world scientific problems, including predicting yield by modeling interactions between plant data and environmental information.
- Discusses the challenge of translating images into biologically informative quantitative phenotypes.
A practical resource for students, researchers, and practitioners, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences.
Zielgruppe
Academic and Professional Reference
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
PART I Basics Chapter 1 Image-Based Plant Phenotyping: Opportunities and Challenges Chapter 2 Multisensor Phenotyping for Crop Physiology Chapter 3 Image Processing Techniques for Plant Phenotyping PART II Techniques Chapter 4 Segmentation Techniques and Challenges in Plant Phenotyping Chapter 5 Structural High-Throughput Plant Phenotyping Based on Image Sequence Analysis Chapter 6 Geometry Reconstruction of Plants Chapter 7 Image-Based Structural Phenotyping of Stems and Branches Chapter 8 Time Series- and Eigenvalue-Based Analysis of Plant Phenotypes Chapter 9 Data-Driven Techniques for Plant Phenotyping Using Hyperspectral Imagery Chapter 10 Machine Learning and Statistical Approaches for Plant Phenotyping Chapter 11 A Brief Introduction to Machine Learning and Deep Learning for Computer Vision PART III Practice Chapter 12 Chlorophyll a Fluorescence Analyses to Investigate the Impacts of Genotype, Species, and Stress on Photosynthetic Efficiency and Plant Productivity Chapter 13 Predicting Yield by Modeling Interactions between Canopy Coverage Image Data, Genotypic and Environmental Information for Soybeans Chapter 14 Field Phenotyping for Salt Tolerance and Imaging Techniques for Crop Stress Biology Chapter 15 The Adoption of Automated Phenotyping by Plant Breeders