Buch, Englisch, 228 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
An Approach via the Mathematical Theory of Evidence
Buch, Englisch, 228 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Reihe: Springer Series in Reliability Engineering
ISBN: 978-1-4419-4034-6
Verlag: Springer US
The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. The text presents various tools for evaluating uncertainty, beginning with the probabilistic approach and concluding with the expression of uncertainty using random-fuzzy variables. Numerous examples throughout help explain the book’s unique approach. The book is designed for immediate use and application in research and laboratory work.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
Uncertainty in Measurement.- Fuzzy Variables and Measurement Uncertainty.- The Theory of Evidence.- Random-Fuzzy Variables.- Construction of Random-Fuzzy Variables.- Fuzzy Operators.- The Mathematics of Random-Fuzzy Variables.- Representation of Random-Fuzzy Variables.- Decision-Making Rules with Random-Fuzzy Variables.- List of Symbols.