E-Book, Englisch, 256 Seiten, eBook
Sahni Quantal Density Functional Theory
Erscheinungsjahr 2013
ISBN: 978-3-662-09624-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 256 Seiten, eBook
ISBN: 978-3-662-09624-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Quantal density functional theory (Q-DFT) is a new local effective potential energy theory of the electronic structure of matter. It is a description in terms of classical fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of the many-body electron correlations present in such a description, namely, those due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, and correlation-current-density effects. The book further describes Schrödinger theory from the new perspective of fields and quantal sources. It also explains the physics underlying the functionals and functional derivatives of traditional DFT.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction.- 2. Schrödinger Theory from the Perspective of ‘Classical’ Fields Derived from Quantal Sources.- 3. Quantal Density Functional Theory.- 4. The Hohenberg-Kohn Theorems and Kohn-Sham Density Functional Theory.- 5. Physical Interpretation of Kohn-Sham Density Functional Theory.- 6. Quantal Density Functional Theory of the Density Amplitude.- 7. Quantal Density Functional Theory of the Discontinuity in the Electron-Interaction Potential Energy.- 8. Further Insights Derived Via Quantal Density Functional Theory.- 9. Epilogue.- Appendices.- A. Proof of the Pure State Differential Virial Theorem.- B. Proof of the Harmonic Potential Theorem.- C. Analytical Expressions for the Properties of the Ground and First Excited Singlet States of the Hooke’s Atom.- D. Derivation of the Kinetic-Energy-Density Tensor for Hooke’s Atom in Its Ground State.- E. Proof of the S System Differential Virial Theorem.- F. Derivation of the Pair-Correlation Density in the Local Density Approximation for Exchange.- References.