Sahai / Ojeda | Analysis of Variance for Random Models, Volume 2: Unbalanced Data | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 480 Seiten, Web PDF

Reihe: Mathematics and Statistics

Sahai / Ojeda Analysis of Variance for Random Models, Volume 2: Unbalanced Data

Theory, Methods, Applications, and Data Analysis
Erscheinungsjahr 2007
ISBN: 978-0-8176-4425-3
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory, Methods, Applications, and Data Analysis

E-Book, Englisch, 480 Seiten, Web PDF

Reihe: Mathematics and Statistics

ISBN: 978-0-8176-4425-3
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



Analysis of variance (ANOVA) models have become widely used tools and play a fundamental role in much of the application of statistics today. In particular, ANOVA models involving random effects have found widespread application to experimental design in a variety of fields requiring measurements of variance, including agriculture, biology, animal breeding, applied genetics, econometrics, quality control, medicine, engineering, and social sciences.

This two-volume work is a comprehensive presentation of different methods and techniques for point estimation, interval estimation, and tests of hypotheses for linear models involving random effects. Both Bayesian and repeated sampling procedures are considered. Volume 1 examines models with balanced data (orthogonal models); Volume 2 studies models with unbalanced data (nonorthogonal models).

Accessible to readers with only a modest mathematical and statistical background, the work will appeal to a broad audience of students, researchers, and practitioners in the mathematical, life, social, and engineering sciences. It may be used as a textbook in upper-level undergraduate and graduate courses, or as a reference for readers interested in the use of random effects models for data analysis.

Sahai / Ojeda Analysis of Variance for Random Models, Volume 2: Unbalanced Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Matrix Preliminaries and General Linear Model.- Some General Methods for Making Inferences about Variance Components.- One-Way Classification.- Two-Way Crossed Classification without Interaction.- Two-Way Crossed Classification with Interaction.- Three-Way and Higher-Order Crossed Classifications.- Two-Way Nested Classification.- Three-Way Nested Classification.- General r-Way Nested Classification.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.