Särkkä / Svensson | Bayesian Filtering and Smoothing | Buch | 978-1-108-92664-5 | sack.de

Buch, Englisch, Band 17, 430 Seiten, Format (B × H): 152 mm x 224 mm, Gewicht: 623 g

Reihe: Institute of Mathematical Statistics Textbooks

Särkkä / Svensson

Bayesian Filtering and Smoothing


2. Auflage 2023
ISBN: 978-1-108-92664-5
Verlag: Cambridge University Press

Buch, Englisch, Band 17, 430 Seiten, Format (B × H): 152 mm x 224 mm, Gewicht: 623 g

Reihe: Institute of Mathematical Statistics Textbooks

ISBN: 978-1-108-92664-5
Verlag: Cambridge University Press


Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

Särkkä / Svensson Bayesian Filtering and Smoothing jetzt bestellen!

Weitere Infos & Material


Symbols and abbreviations; 1. What are Bayesian filtering and smoothing?; 2. Bayesian inference; 3. Batch and recursive Bayesian estimation; 4. Discretization of continuous-time dynamic models; 5. Modeling with state space models; 6. Bayesian filtering equations and exact solutions; 7. Extended Kalman filtering; 8. General Gaussian filtering; 9. Gaussian filtering by enabling approximations; 10. Posterior linearization filtering; 11. Particle filtering; 12. Bayesian smoothing equations and exact solutions; 13. Extended Rauch-Tung-Striebel smoothing; 14. General Gaussian smoothing; 15. Particle smoothing; 16. Parameter estimation; 17. Epilogue; Appendix. Additional material; References; Index.


Särkkä, Simo
Simo Särkkä is Associate Professor in the Department of Electrical Engineering and Automation at Aalto University, Finland. His research interests center on state estimation and stochastic modeling, and he has authored two books (2013 and 2019) on these topics. He is Fellow of ELLIS, Senior Member of IEEE, a recipient of multiple paper awards, and he has been Chair of MLSP and FUSION conferences.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.