Buch, Englisch, 107 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g
Model Reduction in Engineering
Buch, Englisch, 107 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 195 g
Reihe: SpringerBriefs in Computer Science
ISBN: 978-3-031-52766-1
Verlag: Springer Nature Switzerland
Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models.
The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Technische Thermodynamik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Structured Data and Knowledge in Model-based Engineering.- Learning Projection-based Reduced-order Models.- Error Estimation.- Resources: Software and Tutorials.- Industrial Application: Uncertainty Quantification in Lifetime Prediction of Turbine Blades.- Applications and Extensions: A Survey of Literature.