Rutkowski / Scherer / Korytkowski | Artificial Intelligence and Soft Computing | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 356 Seiten

Reihe: Computer Science

Rutkowski / Scherer / Korytkowski Artificial Intelligence and Soft Computing

24th International Conference, ICAISC 2025, Zakopane, Poland, June 22–26, 2025, Proceedings, Part III
Erscheinungsjahr 2025
ISBN: 978-3-032-03711-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

24th International Conference, ICAISC 2025, Zakopane, Poland, June 22–26, 2025, Proceedings, Part III

E-Book, Englisch, 356 Seiten

Reihe: Computer Science

ISBN: 978-3-032-03711-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume constitutes the proceedings of 24th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2025, Zakopane, Poland, during June 22–26, 2025.

The 83 full papers included in this book were carefully reviewed and selected from 163 submissions.They are organized in topical sections as follows:

Part I - Neural Networks and Their Applications; Fuzzy Systems and Their Applications; Evolutionary Algorithms and Their Applications.

Part II -  Computer Vision, Image and Speech Analysis;  Data Mining;  Pattern Classification and Artificial Intelligence in Modeling and Simulation.

Part III - Various Problems of Artificial Intelligence;  Agent Systems, Robotics and Control,  Bioinformatics, Biometrics and Medical Applications and Concurrent Parallel Processing.

Rutkowski / Scherer / Korytkowski Artificial Intelligence and Soft Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Various Problems of Artificial Intelligence.

.- Evaluating Scalability in Open-Set Face Recognition Systems.

.- Magic Numbers: Algorithm for Mitigating Hallucinations in LLMs.

.- Lightweight Anomaly Detection for IoT: Evaluating Machine Learning
and Deep Learning Models on CICIDS2017.

.- A survey on algorithms used for drone energy consumption modelling.

.- Extension to LIBLINEAR’s Logistic Regression Supporting Elastic-Net
Penalty.

.- LoRa Device Identification: A Lightweight Alternative to CNN-Based
Methods.

.- Enhanced Graph Deviation Networks for Anomaly Detection in Space
Telemetry.

.- Hybrid Retrieval in RAG: A Comparison of Semantic, Lexical and
Reranking Methods.

.- Analysis of Data and Supervised Machine Learning Algorithms for
Intrusion Detection.

.- AI-Driven Tourist Destination Recommendation Systems: A Neural
Network Approach.

.- Privacy-Preserving Inference for Public Neural Networks.

.- Use of graph-based knowledge organization to improve the results of
Retrieval Augmented Generation for narrative texts.

.- Using frequent subgraph mining in flat layout quality classification.

.- Adaptive Interactive Process Drift Detection: Detecting and visualizing
process drifts.

.-  Agent Systems, Robotics and Control.

.- Distributed Variational Autoencoder Using Actor-Based Architecture.

.- A Comprehensive Framework for Turn-Taking Evaluation in
Multi-Agent Systems: Rotational Periodicity for Scalable Coordination
Analysis.

.- Application of Adaptive PSO Algorithm in Design of FIR Filters.

.- Bioinformatics, Biometrics and Medical Applications.

.- Novel Method for ICG Data Augmentation By Using Noise-Based
Approach.

.- A Statistical Reconstruction Algorithm for CT with a Flying Focal
Spot Using Direct, Interpolation-Free Projections.

.- Optimizing OpenMax Parameters for Open-Set Face Recognition.

.- Taxonomic Classification of Spiders (Araneae) Based on Image Texture
Analysis Using Multifiltering.

.- A Hybrid Handcrafted and Deep Transfer Learning-Based Framework
for COVID-19 Detection Using Voice Analysis.

.- A modified method for an iterative reconstruction algorithm utilizing a
back-projection correlation approach in multi-focus low-dose tomography.

.- Emotions and App-supported Artificial Intelligence as a Helpful Tool
in Psychiatry.

.- Dermoscopy-specific XAI for melanoma recognition.

.- Analysis of Respiratory Sinus Arrhythmia with Neural Networks.

.- A method for verifying dynamic signatures based on signature regions.

.- Concurrent Parallel Processing.

.- Efficiently Parallelized Associative Inference of Associative Graph Data
Neural Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.