Buch, Englisch, 92 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 131 g
Buch, Englisch, 92 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 131 g
Reihe: Cambridge Tracts in Mathematics
ISBN: 978-1-107-49376-6
Verlag: Cambridge University Press
Autoren/Hrsg.
Weitere Infos & Material
Preface; Part I: 1. A new notation; 2. Galois fields and Fermat's theorem; 3. Transformations in the Galois fields; 4. Types of concomitants; 5. Systems and finiteness; 6. Symbolical notation; 7. Generators of linear transformations; 8. Weight and isobarbism; 9. Congruent concomitants; 10. Relation between congruent and algebraic covariants; 11. Formal covariants; 13. Dickson's theorem; 14. Formal invariants of linear form; 15. The use of symbolical operators; 16. Annihilators of formal invariants; 17. Dickson's method for formal covariants; 18. Symbolical representation of pseudo-isobaric formal covariants; 19. Classes; 20. Characteristic invariants; 21. Syzygies; 22. Residual covariants; 23. Miss Sanderson's theorem; 24. A method of finding characteristic invariants; 25. Smallest full systems; 26. Residual invariants of linear forms; 27. Residual invariants of quadratic forms; 28. Cubic and higher forms; 29. Relative unimportance of residual covariants; 30. Non-formal residual covariants; Part II: 31. Rings and fields; 32. Expansions; 33. Isomorphism; 34. Finite expansions; 35. Transcendental and algebraic expansions; 36. Rational basis theorem of E. Noether; 37. The fields Ky+/-f; 38. Expansions of the first and second sorts; 39. The theorem on divisor chains; 40. R-modules; 41. A theorem of Artin and of van der Waerden; 42. The finiteness criterion of E. Noether; 43. Application of E. Noether's theorem to modular covariants; Appendix I; Appendix II; Appendix III; Index.