Rumely | Capacity Theory on Algebraic Curves | Buch | 978-3-540-51410-7 | sack.de

Buch, Englisch, Band 1378, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1370 g

Reihe: Lecture Notes in Mathematics

Rumely

Capacity Theory on Algebraic Curves


1989
ISBN: 978-3-540-51410-7
Verlag: Springer Berlin Heidelberg

Buch, Englisch, Band 1378, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1370 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-51410-7
Verlag: Springer Berlin Heidelberg


Capacity is a measure of size for sets, with diverse applications in potential theory, probability and number theory. This book lays foundations for a theory of capacity for adelic sets on algebraic curves. Its main result is an arithmetic one, a generalization of a theorem of Fekete and Szegö which gives a sharp existence/finiteness criterion for algebraic points whose conjugates lie near a specified set on a curve. The book brings out a deep connection between the classical Green's functions of analysis and Néron's local height pairings; it also points to an interpretation of capacity as a kind of intersection index in the framework of Arakelov Theory. It is a research monograph and will primarily be of interest to number theorists and algebraic geometers; because of applications of the theory, it may also be of interest to logicians. The theory presented generalizes one due to David Cantor for the projective line. As with most adelic theories, it has a local and a global part. Let /K be a smooth, complete curve over a global field; let Kv denote the algebraic closure of any completion of K. The book first develops capacity theory over local fields, defining analogues of the classical logarithmic capacity and Green's functions for sets in (Kv). It then develops a global theory, defining the capacity of a galois-stable set in (Kv) relative to an effictive global algebraic divisor. The main technical result is the construction of global algebraic functions whose logarithms closely approximate Green's functions at all places of K. These functions are used in proving the generalized Fekete-Szegö theorem; because of their mapping properties, they may be expected to have other applications as well.

Rumely Capacity Theory on Algebraic Curves jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preliminaries.- Foundations.- The canonical distance.- Local capacity theory — Archimedean case.- Local capacity theory — Nonarchimedean case.- Global capacity theory.- Applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.