E-Book, Englisch, Band 69, 203 Seiten, eBook
Ruhe Algorithmic Aspects of Flows in Networks
Erscheinungsjahr 2012
ISBN: 978-94-011-3444-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 69, 203 Seiten, eBook
Reihe: Mathematics and Its Applications
ISBN: 978-94-011-3444-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
§ 1 Foundations.- 1.1. General preliminaries.- 1.2. Graph theory.- 1.3. Algorithms and complexity.- §2 Maximum Flows.- 2.1. Problem statement and fundamental results.- 2.2. Augmenting paths and blocking flows.- 2.3. Scaling.- 2.4. Preflows and the Goldberg algorithm.- 2.5. Computational results.- 2.6. Characterization of all optimal solutions.- 2.7. Maximal flows between all pairs of vertices.- §3 Minimum-Cost Flow Problems.- 3.1. Problem statement and fundamental results.- 3.2. History of polynomial algorithms.- 3.3. The network simplex method.- 3.4. Computational results.- §4 Generalized Networks.- 4.1. Maximum flows in generalized networks.- 4.2. A combinatorial algorithm for the generalized circulation problem.- 4.3. The simplex method for minimum-cost generalized flows.- 4.4. Computational results.- § 5 Multicriteria Flows.- 5.1. Fundamental results.- 5.2. Complexity results.- 5.3. Algorithms.- 5.4. An exact method for bicriteria minimum-cost flows.- 5.5. Approximative methods for bicriteria flows.- 5.6. ?-optimality.- 5.7. Computational results.- 5.8. An application: Optimal computer realization of linear algorithms.- §6 Parametric Flows.- 6.1. Motivation and fundamental results.- 6.2. The number of breakpoints for parametric flow problems.- 6.3. Vertical algorithm for the parametric maximum flow problem.- 6.4. Horizontal algorithm for parametric optimal flows in generalized networks.- 6.5. Dual reoptimization for parametric changes in the minimumcost flow problem.- 6.6. Fuzzy network flows.- §7 Detecting Network Structure.- 7.1. Embedded networks, graph realization, and total unimodularity.- 7.2. Complexity results.- 7.3. Graph realization by means of m-hierarchies.- 7.4. Equivalent problem formulations using network flows.- 7.5. Numerical investigationsto determine embedded networks.- §8 Solution of Network Flow Problems With Additional Constraints.- 8.1. Introduction.- 8.2. A primal partitioning algorithm.- 8.3. Solution of a class of interval scheduling problems.- List of Algorithms.- List of Problems.- References.