Buch, Englisch, 173 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g
Buch, Englisch, 173 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g
Reihe: ICIAM 2019 SEMA SIMAI Springer Series
ISBN: 978-3-030-61802-5
Verlag: Springer International Publishing
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to signi?cant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of di?erent temporal and spatial scales and the presence of contacts among di?erent components through (irregular) interfaces that often connect media with di?erent characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
C. Alberini and S. Finzi Vita, A numerical approach to a nonlinear diffusion model for self-organised criticality phenomena.- M. Cefalo et al., Approximation of 3D Stokes flows in fractal domains.- S. Fragapane, 8-Laplacian obstacle problems in fractal domains.- M. Gabbard, Discretization of the Koch Snowflake Domain with Boundary and Interior Energies.- M.V. Marchi, On the dimension of the Sierpinski gasket in l2.- U. Mosco and M.A. Vivaldi, On the external approximation of Sobolev spaces by M-convergence.- A. Rozanova-Pierrat, Generalization of Rellich-Kondrachov theorem and trace compacteness for fractal boundaries.