Rozanova-Pierrat / Lancia | Fractals in Engineering: Theoretical Aspects and Numerical Approximations | Buch | 978-3-030-61802-5 | sack.de

Buch, Englisch, 173 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g

Reihe: ICIAM 2019 SEMA SIMAI Springer Series

Rozanova-Pierrat / Lancia

Fractals in Engineering: Theoretical Aspects and Numerical Approximations


1. Auflage 2021
ISBN: 978-3-030-61802-5
Verlag: Springer International Publishing

Buch, Englisch, 173 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g

Reihe: ICIAM 2019 SEMA SIMAI Springer Series

ISBN: 978-3-030-61802-5
Verlag: Springer International Publishing


Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to signi?cant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of di?erent temporal and spatial scales and the presence of contacts among di?erent components through (irregular) interfaces that often connect media with di?erent characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.


Rozanova-Pierrat / Lancia Fractals in Engineering: Theoretical Aspects and Numerical Approximations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


C. Alberini and S. Finzi Vita, A numerical approach to a nonlinear diffusion model for self-organised criticality phenomena.- M. Cefalo et al., Approximation of 3D Stokes flows in fractal domains.- S. Fragapane, 8-Laplacian obstacle problems in fractal domains.- M. Gabbard, Discretization of the Koch Snowflake Domain with Boundary and Interior Energies.- M.V. Marchi, On the dimension of the Sierpinski gasket in l2.- U. Mosco and M.A. Vivaldi, On the external approximation of Sobolev spaces by M-convergence.- A. Rozanova-Pierrat, Generalization of Rellich-Kondrachov theorem and trace compacteness for  fractal boundaries.



Maria Rosaria Lanciais Professor of Mathematical Analysis at Sapienza University of Rome, where she received her PhDin Applied and Theoretical Mechanics. Her current research interests are Fractal Analysis and Numerical approximation of BVPs in fractal domains. The emphasis is on linear, quasilinear and fractional BVPs in and within fractal domains possibly with dynamical boundary conditions and vector analysis on fractafolds. She is an editorial board member of Fractal and Fractional, MDPI and of the J. of Applied Mathematics and Computation, Hill Publishing Group.

Anna Rozanova-Pierrat is Associate Professor of Applied Mathematics in CentraleSupélec, University Paris-Saclay, France. She obtained his PhD on Applied Mathematics in University Pierre et Marie Currie Paris 6 and RUDN (Moscow, Russia), where she finished her studies on Theoretical and Applied  Mathematics.  Her current research interests are motivated by physical and engineer problems (models of non linear acoustics, de Gennes hypothesis on the speed of the heat propagation between two media, shape optimization) involving irregular and fractal boundaries.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.