Roy / Kar / Datta | Recommender Systems | Buch | 978-1-032-33322-9 | sack.de

Buch, Englisch, 278 Seiten, Format (B × H): 233 mm x 156 mm, Gewicht: 424 g

Reihe: Intelligent Systems

Roy / Kar / Datta

Recommender Systems

A Multi-Disciplinary Approach
1. Auflage 2024
ISBN: 978-1-032-33322-9
Verlag: Taylor & Francis Ltd

A Multi-Disciplinary Approach

Buch, Englisch, 278 Seiten, Format (B × H): 233 mm x 156 mm, Gewicht: 424 g

Reihe: Intelligent Systems

ISBN: 978-1-032-33322-9
Verlag: Taylor & Francis Ltd


Recommender Systems: A Multi-Disciplinary Approach presents a multi-disciplinary approach for the development of recommender systems. It explains different types of pertinent algorithms with their comparative analysis and their role for different applications. This book explains the big data behind recommender systems, the marketing benefits, how to make good decision support systems, the role of machine learning and artificial networks, and the statistical models with two case studies. It shows how to design attack resistant and trust-centric recommender systems for applications dealing with sensitive data.

Features of this book:

- Identifies and describes recommender systems for practical uses

- Describes how to design, train, and evaluate a recommendation algorithm

- Explains migration from a recommendation model to a live system with users

- Describes utilization of the data collected from a recommender system to understand the user preferences

- Addresses the security aspects and ways to deal with possible attacks to build a robust system

This book is aimed at researchers and graduate students in computer science, electronics and communication engineering, mathematical science, and data science.

Roy / Kar / Datta Recommender Systems jetzt bestellen!

Zielgruppe


Academic and Postgraduate

Weitere Infos & Material


1. Comparison of Different Machine Learning Algorithms to Classify Whether or Not a Tweet Is about a Natural Disaster: A Simulation-Based Approach; 2. An End-to-End Comparison among Contemporary Content-Based Recommendation Methodologies; 3. Neural Network-Based Collaborative Filtering for Recommender Systems; 4. Recommendation System and Big Data: Its Types and Applications; 5. The Role of Machine Learning /AI in Recommender Systems; 6. A Recommender System Based on TensorFlow Framework; 7. A Marketing Approach to Recommender Systems; 8. Applied Statistical Analysis in Recommendation Systems; 9. An IoT-Enabled Innovative Smart Parking Recommender Approach; 10. Classification of Road Segments in Intelligent Traffic Management System; 11. Facial Gestures-Based Recommender System for Evaluating Online Classes; 12. Application of Swarm Intelligence in Recommender Systems; 13. Application of Machine-Learning Techniques in the Development of Neighbourhood-Based Robust Recommender Systems; 14. Recommendation Systems for Choosing Online Learning Resources: A Hands-On Approach


Monideepa Roy, Pushpendu Kar, Sujoy Datta



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.