Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Buch, Englisch, 209 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 506 g
Buch, Englisch, 209 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 506 g
Reihe: Algorithms for Intelligent Systems
ISBN: 978-981-15-3688-5
Verlag: Springer Nature Singapore
The book discusses machine learning-based decision-making models, and presents intelligent, hybrid and adaptive methods and tools for solving complex learning and decision-making problems under conditions of uncertainty. Featuring contributions from data scientists, practitioners and educators, the book covers a range of topics relating to intelligent systems for decision science, and examines recent innovations, trends, and practical challenges in the field. The book is a valuable resource for academics, students, researchers and professionals wanting to gain insights into decision-making.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
Development of Different Machine Learning Ensemble Classifier for Gully Erosion Susceptibility in Gandheswari Watershed of West Bengal, India.- Classification of ECG Heartbeat using Deep Convolutional Neural Network.- Breast Cancer Identification and Diagnosis Techniques.- Energy Efficient Resource Allocation in Data Centers using a Hybrid Evolutionary Algorithm.- Root Cause Analysis using Ensemble Model for Intelligent Decision-Making.- Spider Monkey Optimization Algorithm in Data Science: A Quantifiable Objective Study.- Multi-Agent Based Systems In Machine Learning and Its Practical Case Studies.- Computer Vision and Machine Learning Approach for Malaria Diagnosis in Thin Blood Smears from Microscopic Blood Images.