Rourke / Sanderson | Introduction to Piecewise-Linear Topology | E-Book | sack.de
E-Book

E-Book, Englisch, 126 Seiten, eBook

Reihe: Springer Study Edition

Rourke / Sanderson Introduction to Piecewise-Linear Topology


1982
ISBN: 978-3-642-81735-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 126 Seiten, eBook

Reihe: Springer Study Edition

ISBN: 978-3-642-81735-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The first five chapters of this book form an introductory course in piece wise-linear topology in which no assumptions are made other than basic topological notions. This course would be suitable as a second course in topology with a geometric flavour, to follow a first course in point-set topology, andi)erhaps to be given as a final year undergraduate course. The whole book gives an account of handle theory in a piecewise linear setting and could be the basis of a first year postgraduate lecture or reading course. Some results from algebraic topology are needed for handle theory and these are collected in an appendix. In a second appen dix are listed the properties of Whitehead torsion which are used in the s-cobordism theorem. These appendices should enable a reader with only basic knowledge to complete the book. The book is also intended to form an introduction to modern geo metric topology as a research subject, a bibliography of research papers being included. We have omittedacknowledgements and references from the main text and have collected these in a set of "historical notes" to be found after the appendices.

Rourke / Sanderson Introduction to Piecewise-Linear Topology jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Polyhedra and P.L. Maps.- Basic Notation.- Joins and Cones.- Polyhedra.- Piecewise-Linear Maps.- The Standard Mistake.- P. L. Embeddings.- Manifolds.- Balls and Spheres.- The Poincaré Conjecture and the h-Cobordism Theorem..- 2. Complexes.- Simplexes.- Cells.- Cell Complexes.- Subdivisions.- Simplicial Complexes.- Simplicial Maps.- Triangulations.- Subdividing Diagrams of Maps.- Derived Subdivisions.- Abstract Isomorphism of Cell Complexes.- Pseudo-Radial Projection.- External Joins.- Collars.- Appendix to Chapter 2. On Convex Cells.- 3. Regular Neighbourhoods.- Full Subcomplexes.- Derived Neighbourhoods.- Regular Neighbourhoods.- Regular Neighbourhoods in Manifolds.- Isotopy Uniqueness of Regular Neighbourhoods.- Collapsing.- Remarks on Simple Homotopy Type.- Shelling.- Orientation.- Connected Sums.- Schönflies Conjecture.- 4. Pairs of Polyhedra and Isotopies.- Links and Stars.- Collars.- Regular Neighbourhoods.- Simplicial Neighbourhood Theorem for Pairs.- Collapsing and Shellingfor Pairs.- Application to Cellular Moves.- Disc Theorem for Pairs.- Isotopy Extension.- 5. General Position and Applications.- General Position.- Embedding and Unknotting.- Piping.- Whitney Lemma and Unlinking Spheres.- Non-Simply-Connected Whitney Lemma.- 6. Handle Theory.- Handles on a Cobordism.- Reordering Handles.- Handles of Adjacent Index.- Complementary Handles.- Adding Handles.- Handle Decompositions.- The CW Complex Associated with a Decomposition.- The Duality Theorems.- Simplifying Handle Decompositions.- Proof of the h-Cobordism Theorem.- The Relative Case.- The Non-Simply-Connected Case.- Constructing h-Cobordisms.- 7. Applications.- Unknotting Balls and Spheres in Codimension ? 3.- A Criterion for Unknotting in Codimension 2.- Weak 5-Dimensional Theorems.- Engulfing.- Embedding Manifolds.- Appendix A. Algebraic Results.- A. 1 Homology.- A. 2 Geometric Interpretation of Homology.- A. 3 Homology Groups of Spheres.- A. 4 Cohomology.- A. 5 Coefficients.- A. 6 Homotopy Groups.- A. 8 The Universal Cover.- Appendix B. Torsion.- B. 1 Geometrical Definition of Torsion.- B. 2 Geometrical Properties of Torsion.- B. 3 Algebraic Definition of Torsion.- B. 4 Torsion and Polyhedra.- B. 5 Torsion and Homotopy Equivalences.- Historical Notes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.