Buch, Englisch, 255 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g
Reihe: Springer Theses
Buch, Englisch, 255 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g
Reihe: Springer Theses
ISBN: 978-3-319-87425-8
Verlag: Springer International Publishing
This thesis reports on novel methods for gain-scheduling and fault tolerant control (FTC). It begins by analyzing the connection between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms. This is then followed by a detailed description of the design of robust and shifting state-feedback controllers for these systems. Furthermore, it presents two approaches to fault-tolerant control: the first is based on a robust polytopic controller design, while the second involves a reconfiguration of the reference model and the addition of virtual actuators into the loop. Inaddition the thesis offers a thorough review of the state-of-the art in gain scheduling and fault-tolerant control, with a special emphasis on LPV and TS systems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
Weitere Infos & Material
Introduction.- Part.- Advances in gain-scheduling techniques.- Background on gain-scheduling.- Automated generation and comparison of Takagi-Sugeno and polytopic quasi-LPV models.- Robust state-feedback control of uncertain LPV systems.- Shifting state-feedback control of LPV systems.- part 2.- Background on fault tolerant control.- Fault tolerant control of LPV systems using robust state-feedback control.- Fault tolerant control of LPV systems using recon?gured reference model and virtual actuators.- Fault tolerant control of unstable LPV systems subject to actuator saturations and fault isolation delay.- Conclusions and future work.