Buch, Englisch, 328 Seiten, Format (B × H): 161 mm x 236 mm, Gewicht: 519 g
ISBN: 978-0-12-415825-2
Verlag: Elsevier Science
This latest edition features all-new material on variance reduction, including control variables and their use in estimating the expected return at blackjack and their relation to regression analysis. Additionally, the 5th edition expands on Markov chain monte carlo methods, and offers unique information on the alias method for generating discrete random variables.
By explaining how a computer can be used to generate random numbers and how to use these random numbers to generate the behavior of a stochastic model over time, Ross's Simulation, 5th edition presents the statistics needed to analyze simulated data as well as that needed for validating the simulation model.
Zielgruppe
<p>Senior/graduate level students taking a course in Simulation, found in many different departments, including: Computer Science, Industrial Engineering, Operations Research, Statistics, Mathematics, Electrical Engineering, and Quantitative Business Analysis.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Technische Wissenschaften Technik Allgemein Ingenieurwissenschaftliches Knowhow
Weitere Infos & Material
Chapter 1 - IntroductionChapter 2 - Elements of ProbabilityChapter 3 - Random NumbersChapter 4 - Generating Discrete Random VariablesChapter 5 - Generating Continuous Random VariablesChapter 6 - The Multivariate Normal Distribution and CopulasChapter 7 - The Discrete Event Simulation ApproachChapter 8 - Statistical Analysis of Simulated DataChapter 9 - Variance Reduction TechniquesChapter 10 - Additional Variance Reduction TechniquesChapter 11 - Statistical Validation TechniquesChapter 12 - Markov Chain Monte Carlo Methods