E-Book, Englisch, Band 81, 392 Seiten, eBook
Ronkin Functions of Completely Regular Growth
1992
ISBN: 978-94-011-2418-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 81, 392 Seiten, eBook
Reihe: Mathematics and its Applications
ISBN: 978-94-011-2418-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Entire functions of completely regular growth of one variable.- §1. Preliminaries.- §2. Regularity of growth, D’-convergence and right distribution of zeros.- §3. Rays of completely regular growth. Addition of indicators.- Notes.- 2. Subharmonic functions of completely regular growth in Rn.- §1. General information on subharmonic functions. D*-convergence ..- §2. Criteria for regularity of growth in Rn.- §3. Rays of completely regular growth and limit sets.- §4. Addition of indicators.- Notes.- 3. Entire functions of completely regular growth in Cn.- §1. Functions of c completely regular growth on complex rays.- §2. Addition of indicators.- §3. Entire functions with prescribed behaviour at infinity.- Notes.- 4. Functions of completely regular growth in the half-plane or a cone.- §1. Preliminary information on functions holomorphic in a half-plane.- §2. Functions of completely regular growth in C+.- §3. Functions of completely regular growth in C+.- §4. Functions of completely regular growth in a cone.- Notes.- 5. Functions of exponential type and bounded on the real space (Fourier transforms of distribution of compact support).- §1. Regularity of growth of entire functions of exponential type and bounded on the real space.- §2. Discrete uniqueness sets.- §3. Norming sets.- Notes.- 6. Quasipolynomials.- §1. M-quasipolynomials. Growth and zero distribution.- §2. Entire functions that are quasipolynomials in every variable.- §3. Factors of quasipolynomials.- Notes.- 7. Mappings.- §1. Information on the general theory of holomorphic mappings.- §2. Plurisubharmonic functions of ?-regular growth and asymptotic behaviour of order functions of holomorphic mappings.- §3. Jessen’s theorem for almost periodic holomorphic mappings.- Notes.