Romero / Rodríguez-Fernández / Martins | Artificial Intelligence in Music, Sound, Art and Design | Buch | 978-3-030-72913-4 | sack.de

Buch, Englisch, Band 12693, 492 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g

Reihe: Lecture Notes in Computer Science

Romero / Rodríguez-Fernández / Martins

Artificial Intelligence in Music, Sound, Art and Design

10th International Conference, EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-72913-4
Verlag: Springer International Publishing

10th International Conference, EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings

Buch, Englisch, Band 12693, 492 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-72913-4
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 10th European Conference on Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2021, held as part of Evo* 2021, as Virtual Event, in April 2021, co-located with the Evo* 2021 events, EvoCOP, EvoApplications, and EuroGP. 
The 24 revised full papers and 7 short papers presented in this book were carefully reviewed and selected from 66 submissions. They cover a wide range of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture.

Romero / Rodríguez-Fernández / Martins Artificial Intelligence in Music, Sound, Art and Design jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Sculpture Inspired Musical Composition, One Possible Approach.- Network Bending: Expressive Manipulation of Deep Generative Models.- SyVMO: Synchronous Variable Markov Oracle for Modeling and Predicting Multi-Part Musical Structures.- Identification of Pure Painting Pigment Using Machine Learning Algorithms.- Evolving Neural Style Transfer Blends.- Evolving Image Enhancement Pipelines.- Genre Recognition from Symbolic Music with CNNs.- Axial Generation: A Concretism-Inspired Method for Synthesizing Highly Varied Artworks.- Interactive, Efficient and Creative Image Generation Using Compositional Pattern-Producing Networks.- Aesthetic Evaluation of Cellular Automata Configurations Using Spatial Complexity and Kolmogorov Complexity.- Auralization of Three-Dimensional Cellular Automata.- Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction.- Convolutional Generative Adversarial Network, via Transfer Learning, for Traditional Scottish Music Generation.- The Enigma of Complexity.- SerumRNN: Step by Step Audio VST Effect Programming.- Parameter Tuning for Wavelet-Based Sound Event Detection Using Neural Networks.- Raga Recognition in Indian Classical Music Using Deep Learning.- The Simulated Emergence of Chord Function.- Incremental Evolution of Stylized Images.- Dissecting Neural Networks Filter Responses for Artistic Style Transfer.- A Fusion of Deep and Shallow Learning to Predict Genres Based on Instrument and Timbre Features.- A Multi-Objective Evolutionary Approach to Identify Relevant Audio Features for Music Segmentation.- Exploring the Effect of Sampling Strategy on Movement Generation with Generative Neural Networks.- "A Good Algorithm Does Not Steal - It Imitates": The Originality Report as a Means of Measuring when a Music Generation Algorithm Copies too Much.- From Music to Image - A Computational Creativity Approach.- “What is human?” A Turing Test for Artistic Creativity.- Mixed-InitiativeLevel Design with RL Brush.- Creating a Digital Mirror of Creative Practice.- An Application for Evolutionary Music Composition Using Autoencoders.- A Swarm Grammar-Based Approach to Virtual World Generation.- Co-Creative Drawing with One-Shot Generative Models.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.