Romano / Marasco | Continuum Mechanics | E-Book | www2.sack.de
E-Book

Romano / Marasco Continuum Mechanics

Advanced Topics and Research Trends
1. Auflage 2010
ISBN: 978-0-8176-4870-1
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

Advanced Topics and Research Trends

E-Book, Englisch, 348 Seiten

Reihe: Modeling and Simulation in Science, Engineering and Technology

ISBN: 978-0-8176-4870-1
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica®, this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.

Romano / Marasco Continuum Mechanics jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;Preface;10
3;Chapter 1 Nonlinear Elasticity;13
3.1;1.1 Preliminary Considerations;13
3.2;1.2 The Equilibrium Problem;14
3.3;1.3 Remarks About Equilibrium Boundary Problems;16
3.4;1.4 Variational Formulation of Equilibrium;19
3.5;1.5 Isotropic Elastic Materials;23
3.6;1.6 Homogeneous Deformations;24
3.7;1.7 Homothetic Deformation;25
3.8;1.8 Simple Extension of a Rectangular Block;28
3.9;1.9 Simple Shear of a Rectangular Block;30
3.10;1.10 Universal Static Solutions;33
3.11;1.11 Constitutive Equations in Nonlinear Elasticity;36
3.12;1.12 Treolar’s Experiments;37
3.13;1.13 Rivlin and Saunders’ Experiment;38
3.14;1.14 Nondimensional Analysis of Equilibrium;40
3.15;1.15 Signorini’s Perturbation Method for Mixed Problems;41
3.16;1.16 Signorini’s Method for Traction Problems;43
3.17;1.17 Loads with an Equilibrium Axis;46
3.18;1.18 Second-Order Hyperelasticity;48
3.19;1.19 A Simple Application of Signorini’s Method;50
3.20;1.20 Van Buren’s Theorem;52
3.21;1.21 An Extension of Signorini’s Method to Live Loads;57
3.22;1.22 Second-Order Singular Surfaces;59
3.23;1.23 Singular Waves in Nonlinear Elastic;63
3.24;1.24 PrincipalWaves in Isotropic Compressible ElasticMaterials;65
3.25;1.25 A Perturbation Method for Waves in CompressibleMedia;68
3.26;1.26 A Perturbation Method for Analyzing OrdinaryWaves in Incompressible Media;72
4;Chapter 2 Micropolar Elasticity;79
4.1;2.1 Preliminary Considerations;79
4.2;2.2 Kinematics of a Micropolar Continuum;80
4.3;2.3 Mechanical Balance Equations;85
4.4;2.4 Energy and Entropy;88
4.5;2.5 Elastic Micropolar Systems;90
4.6;2.6 The Objectivity Principle;93
4.7;2.7 Some Remarks on Boundary Value Problems;98
4.8;2.8 Asymmetric Elasticity;99
5;Chapter 3 Continuous System with aNonmaterial Interface;103
5.1;3.1 Introduction;103
5.2;3.2 Velocity of a Moving Surface;104
5.3;3.3 Velocity of a Moving Curve;106
5.4;3.4 Thomas’ Derivative and Other Formulae;107
5.5;3.5 Differentiation Formulae;108
5.6;3.6 Balance Laws;113
5.7;3.7 Entropy Inequality and Gibbs Potential;118
5.8;3.8 Other Balance Equations;121
5.9;3.9 Integral Form of Maxwell’s Equations;123
6;Chapter 4 Phase Equilibrium;124
6.1;4.1 Boundary Value Problems in Phase Equilibrium;124
6.2;4.2 Some Phenomenological Results of Changes in State;125
6.3;4.3 Equilibrium of Fluid Phases with a Planar Interface;128
6.4;4.4 Equilibrium of Fluid Phases with a Spherical Interface;130
6.5;4.5 Variational Formulation of Phase Equilibrium;133
6.6;4.6 Phase Equilibrium in Crystals;136
6.7;4.7 Wulff’s Construction;141
7;Chapter 5 Stationary and Time-Dependent Phase Changes;144
7.1;5.1 The Problem of Continuous Casting;144
7.2;5.2 On the Evolution of the Solid–Liquid Phase Change;149
7.3;5.3 On the Evolution of the Liquid–Vapor Phase Change;153
7.4;5.4 The Case of a Perfect Gas;157
8;Chapter 6 An Introduction to Mixture Theory;160
8.1;6.1 Balance Laws;161
8.2;6.2 Classical Mixtures;166
8.3;6.3 Nonclassical Mixtures;170
8.4;6.4 Balance Equations of Binary Fluid Mixtures;172
8.5;6.5 Constitutive Equations;174
8.6;6.6 Phase Equilibrium and Gibbs’ Principle;178
8.7;6.7 Evaporation of a Fluid into a Gas;179
9;Chapter 7 Electromagnetism in Matter;182
9.1;7.1 Integral Balance Laws;182
9.2;7.2 Electromagnetic Fields in Rigid Bodies at Rest;185
9.3;7.3 Constitutive Equations for Isotropic Rigid Bodies;189
9.4;7.4 Approximate Constitutive Equations for IsotropicBodies;191
9.5;7.5 Maxwell’s Equations and the Principle ofRelativity;192
9.6;7.6 Quasi-electrostatic and Quasi-magnetostaticApproximations;196
9.7;7.7 Balance Equations for Quasi-electrostatics;200
9.8;7.8 Isotropic and Anisotropic Constitutive Equations;203
9.9;7.9 Polarization Fields and the Equations of Quasielectrostatics;205
9.10;7.10 More General Constitutive Equations;208
9.11;7.11 Lagrangian Formulation of Quasi-electrostatics;209
9.12;7.12 Variational Formulation for Equilibrium in Quasielectrostatics;212
10;Chapter 8 Introduction to MagnetofluidDynamics;216
10.1;8.1 An Evolution Equation for the Magnetic Field;216
10.2;8.2 Balance Equations in Magnetofluid Dynamics;218
10.3;8.3 Equivalent Form of the Balance Equations;219
10.4;8.4 Constitutive Equations;222
10.5;8.5 Ordinary Waves in Magnetofluid Dynamics;223
10.6;8.6 Alfven’s Theorems;227
10.7;8.7 Laminar Motion Between Two Parallel Plates;228
10.8;8.8 Law of Isorotation;233
11;Chapter 9 Continua with an Interface andMicromagnetism;236
11.1;9.1 Ferromagnetism and Micromagnetism;236
11.2;9.2 A Ferromagnetic Crystal as a Continuum with anInterface;238
11.3;9.3 Variations in Surfaces of Discontinuity;239
11.4;9.4 Variational Formulation of Weiss Domains;240
11.5;9.5 Weiss Domain Structure;242
11.6;9.6 Weiss Domains in the Absence of a Magnetic Field;245
11.7;9.7 Weiss Domains in Uniaxial Crystals;247
11.8;9.8 A Variational Principle for Elastic FerromagneticCrystals;250
11.9;9.9 Weiss Domains in Elastic Uniaxial Crystals;252
11.10;9.10 A Possible Weiss Domain Distribution in ElasticUniaxial Crystals;254
11.11;9.11 A More General Variational Principle;255
11.12;9.12 Weiss Domain Branching;261
11.13;9.13 Weiss Domains in an Applied Magnetic Field;263
12;Chapter 10 Relativistic Continuous Systems;267
12.1;10.1 Lorentz Transformations;267
12.2;10.2 The Principle of Relativity;271
12.3;10.3 Minkowski Spacetime;274
12.4;10.4 Physical Meaning of Minkowski Spacetime;278
12.5;10.5 Four-Dimensional Equation of Motion;280
12.6;10.6 Integral Balance Laws;282
12.7;10.7 The Momentum–Energy Tensor;284
12.8;10.8 Fermi and Fermi–Walker Transport;287
12.9;10.9 The Space Projector;291
12.10;10.10 Intrinsic Deformation Gradient;293
12.11;10.11 Relativistic Dissipation Inequality;296
12.12;10.12 Thermoelastic Materials in Relativity;299
12.13;10.13 About the Physical Meanings of Relative Quantities;303
12.14;10.14 Maxwell’s Equation in Matter;305
12.15;10.15 Minkowski’s Description;307
12.16;10.16 Ampere’s Model;308
13;Appendix A Brief Introduction to WeakSolutions;310
13.1;A.1 Weak Derivative and Sobolev Spaces;310
13.2;A.2 A Weak Solution of a PDE;314
13.3;A.3 The Lax–Milgram Theorem;316
14;Appendix B Elements of Surface Geometry;318
14.1;B.1 Regular Surfaces;318
14.2;B.2 The Second Fundamental Form;320
14.3;B.3 Surface Gradient and the Gauss Theorem;325
15;Appendix C First-Order PDE;328
15.1;C.1 Monge’s Cone;328
15.2;C.2 Characteristic Strips;330
15.3;C.3 Cauchy’s Problem;333
16;Appendix D The Tensor Character of SomePhysical Quantities;335
17;References;338
18;Index;351



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.