Roman | Lattices and Ordered Sets | Buch | 978-1-4419-2704-0 | sack.de

Buch, Englisch, 305 Seiten, Previously published in hardcover, Format (B × H): 154 mm x 233 mm, Gewicht: 470 g

Roman

Lattices and Ordered Sets


Softcover Nachdruck of hardcover 1. Auflage 2009
ISBN: 978-1-4419-2704-0
Verlag: Springer

Buch, Englisch, 305 Seiten, Previously published in hardcover, Format (B × H): 154 mm x 233 mm, Gewicht: 470 g

ISBN: 978-1-4419-2704-0
Verlag: Springer


This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF, and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Roman Lattices and Ordered Sets jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Basic Theory.- Partially Ordered Sets.- Well-Ordered Sets.- Lattices.- Modular and Distributive Lattices.- Boolean Algebras.- The Representation of Distributive Lattices.- Algebraic Lattices.- Prime and Maximal Ideals; Separation Theorems.- Congruence Relations on Lattices.- Topics.- Duality for Distributive Lattices: The Priestley Topology.- Free Lattices.- Fixed-Point Theorems.


Steven Roman is the author of many successful textbooks, including Advanced Linear Algebra, 3rd Edition (Springer 2007), Field Theory, 2nd Edition (Springer 2005), and Introduction to the Mathematics of Finance (2004).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.