E-Book, Englisch, 356 Seiten, eBook
Roman Introduction to the Mathematics of Finance
Erscheinungsjahr 2013
ISBN: 978-1-4419-9005-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Risk Management to Options Pricing
E-Book, Englisch, 356 Seiten, eBook
Reihe: Undergraduate Texts in Mathematics
ISBN: 978-1-4419-9005-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Portfolio Risk Management.- Option Pricing Models.- Assumptions.- Arbitrage.- Probability I: An Introduction to Discrete Probability.- 1.1 Overview.- 1.2 Probability Spaces.- 1.3 Independence.- 1.4 Binomial Probabilities.- 1.5 Random Variables.- 1.6 Expectation.- 1.7 Variance and Standard Deviation.- 1.8 Covariance and Correlation; Best Linear Predictor.- Exercises.- Portfolio Management and the Capital Asset Pricing Model.- 2.1 Portfolios, Returns and Risk.- 2.2 Two-Asset Portfolios.- 2.3 Multi-Asset Portfolios.- Exercises.- Background on Options.- 3.1 Stock Options.- 3.2 The Purpose of Options.- 3.3 Profit and Payoff Curves.- 3.4 Selling Short.- Exercises.- An Aperitif on Arbitrage.- 4.1 Background on Forward Contracts.- 4.2 The Pricing of Forward Contracts.- 4.3 The Put-Call Option Parity Formula.- 4.4 Option Prices.- Exercises.- Probability II: More Discrete Probability.- 5.1 Conditional Probability.- 5.2 Partitions and Measurability.- 5.3 Algebras.- 5.4 Conditional Expectation.- 5.5 Stochastic Processes.- 5.6 Filtrations and Martingales.- Exercises.- Discrete-Time Pricing Models.- 6.1 Assumptions.- 6.2 Positive Random Variables.- 6.3 The Basic Model by Example.- 6.4 The Basic Model.- 6.5 Portfolios and Trading Strategies.- 6.6 The Pricing Problem: Alternatives and Replication.- 6.7 Arbitrage Trading Strategies.- 6.8 Admissible Arbitrage Trading Strategies.- 6.9 Characterizing Arbitrage.- 6.10 Computing Martingale Measures.- Exercises.- The Cox-Ross-Rubinstein Model.- 7.1 The Model.- 7.2 Martingale Measures in the CRR model.- 7.3 Pricing in the CRR Model.- 7.4 Another Look at the CRR Model via Random Walks.- Exercises.- Probability III: Continuous Probability.- 8.1 General Probability Spaces.- 8.2 Probability Measures on ?.- 8.3 Distribution Functions.- 8.4 Density Functions.- 8.5 Types of Probability Measures on ?.- 8.6 Random Variables.- 8.7 The Normal Distribution.- 8.8 Convergence in Distribution.- 8.9 The Central Limit Theorem.- Exercises.- The Black-Scholes Option Pricing Formula.- 9.1 Stock Prices and Brownian Motion.- 9.2 The CRR Model in the Limit: Brownian Motion.- 9.3 Taking the Limit as °t ? 0.- 9.4 The Natural CRR Model.- 9.5 The Martingale Measure CRR Model.- 9.6 More on the Model From a Different Perspective: Ito's Lemma.- 9.7 Are the Assumptions Realistic?.- 9.8 The Black-Scholes Option Pricing Formula.- 9.9 How Black-Scholes is Used in Practice: Volatility Smiles and Surfaces.- 9.10 How Dividends Affect the Use of Black-Scholes.- Exercises.- Optimal Stopping and American Options.- 10.1 An Example.- 10.2 The Model.- 10.3 The Payoffs.- 10.4 Stopping Times.- 10.5 Stopping the Payoff Process.- 10.6 The Stopped Value of an American Option.- 10.7 The Initial Value of an American Option, or What to Do At Time to.- 10.8 What to Do At Time tk.- 10.9 Optimal Stopping Times and the Snell Envelop.- 10.10 Existence of Optimal Stopping Times.- 10.11 Characterizing the Snell Envelop.- 10.12 Additional Facts About Martingales.- 10.13 Characterizing Optimal Stopping Times.- 10.14 Optimal Stopping Times and the Doob Decomposition.- 10.15 The Smallest Optimal Stopping Time.- 10.16 The Largest Optimal Stopping Time.- Exercises.- Appendix A: Pricing Nonattainable Alternatives in an Incomplete Market.- A. 1 Fair Value in an Incomplete Market.- A.2 Mathematical Background.- A.3 Pricing Nonattainable Alternatives.- Exercises.- Appendix B: Convexity and the Separation Theorem.- B. 1 Convex, Closed and Compact Sets.- B.2 Convex Hulls.- B.3 Linear and Affine Hyperplanes.- B.4 Separation.- Selected Solutions.- References.