An Interactive Approach to Machine Learning and Analytics
Buch, Englisch, 364 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 688 g
ISBN: 978-0-367-43914-9
Verlag: Chapman and Hall/CRC
Features
- Gets you quickly using R as a problem-solving tool
- Uses RStudio’s integrated development environment
- Shows how to interface R with SQLite
- Includes examples using R’s Rattle graphical user interface
- Requires no prior knowledge of R, machine learning, or computer programming
- Offers over 50 scripts written in R, including several problem-solving templates that, with slight modification, can be used again and again
- Covers the most popular machine learning techniques, including ensemble-based methods and logistic regression
- Includes end-of-chapter exercises, many of which can be solved by modifying existing scripts
- Includes datasets from several areas, including business, health and medicine, and science
About the Author
Richard J. Roiger is a professor emeritus at Minnesota State University, Mankato, where he taught and performed research in the Computer and Information Science Department for over 30 years.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Technische Wissenschaften Technik Allgemein Technik: Allgemeines
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Spracherkennung, Sprachverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
Weitere Infos & Material
Preface. Acknowledgment. Author. Introduction to Machine Learning. Introduction to R. Data Structures and Manipulation. Preparing the Data. Supervised Statistical Techniques. Tree-Based Methods. Rule-Based Techniques. Neural Networks. Formal Evaluation Techniques. Support Vector Machines. Unsupervised Clustering Techniques. A Case Study in Predicting Treatment Outcome. Bibliography. Appendix A: Supplementary Materials and More Datasets. Appendix B: Statistics for Performance Evaluation. Subject Index. Index of R Functions. Script Index.