Rodd / Suski | Artificial Intelligence in Real-Time Control 1991 | E-Book | sack.de
E-Book

E-Book, Englisch, 177 Seiten, Web PDF

Reihe: IFAC Workshop Series

Rodd / Suski Artificial Intelligence in Real-Time Control 1991

Proceedings of the 3rd IFAC Workshop, California, USA, 23-25 September 1991
1. Auflage 2014
ISBN: 978-1-4832-9810-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 3rd IFAC Workshop, California, USA, 23-25 September 1991

E-Book, Englisch, 177 Seiten, Web PDF

Reihe: IFAC Workshop Series

ISBN: 978-1-4832-9810-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This set of proceedings contains the most significant papers presented at the third IFAC Workshop on Artificial Intelligence in Real-time Control, which was held from September 23-25, 1991 in the USA. In this workshop, although there were still some 'exotic' applications, a more practical view of the applications and limitations of current AI technology dominated the participants' discussions. With its resultant focus on reliability and safety considerations, the workshop posed as many questions as it answered. It provides an excellent mirror of the current state-of-the-art which these proceedings are intended to illustrate.

Rodd / Suski Artificial Intelligence in Real-Time Control 1991 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Artificial Intelligence in Real-Time Control 1991;4
3;Copyright Page;5
4;Table of Contents;10
5;Preface;8
6;PART 1: NEW PARADIGMS FOR AI IN REAL-TIME SYSTEMS;12
6.1;CHAPTER 1. TOWARDS DISTRIBUTED REAL-TIME INTELLIGENCE;12
6.1.1;INTRODUCTION;12
6.1.2;IDENTIFYING THE FUTURE REQUIREMENTS OF INTELLIGENT SYSTEMS;12
6.1.3;A DISTRIBUTED REAL-TIME INTELLIGENT FRAMEWORK;13
6.1.4;THE BULLETIN BOARD MODEL;15
6.1.5;CONCLUSIONS;16
6.1.6;REFERENCES;17
6.2;CHAPTER 2. ARTIFICIAL INTELLIGENCE IN HARD REAL-TIME - A
NEW PARADIGM NEEDED?;20
6.2.1;INTRODUCTION;20
6.2.2;DEDUCTION AND INDUCTION BASED METHODS IN CONVENTIONAL AI;20
6.2.3;HARD REAL-TIME SYSTEMS AND AI METHODS;21
6.2.4;A NEW PARADIGM FOR DEVELOPING AI METHODS FOR HARD REAL-TIME SYSTEMS;22
6.2.5;CONCLUSIONS;23
6.2.6;REFERENCES;23
7;PART 2: INTELLIGENT REAL-TIME CONTROL;24
7.1;CHAPTER 3. DICE: A FRAMEWORK FOR INTELLIGENT REAL-TIME
CONTROL;24
7.1.1;1 Introduction;24
7.1.2;2 Real-Time Expert Systems;24
7.1.3;3 DICE;25
7.1.4;4 Uncertainty management in DICE;27
7.1.5;5 Intelligent control;27
7.1.6;6 Application of DICE in Intelligent Control;27
7.1.7;7 Conclusions;29
7.1.8;References;29
7.2;CHAPTER 4. A REAL TIME EXPERT SYSTEM ENVIRONMENT FOR
PROCESS CONTROL;30
7.2.1;1 INTRODUCTION;30
7.2.2;2 Global Architecture;30
7.2.3;3 Regulators;32
7.2.4;4 Implementation;33
7.2.5;5 Application;34
7.2.6;6 Conclusions and future work;35
7.2.7;Acknowledgments;35
7.2.8;References;35
7.3;CHAPTER 5. PREPROCESSING INPUTS FOR ADAPTIVE CRITIC CONTROL;38
7.3.1;INTRODUCTION;38
7.3.2;THE METHODS;39
7.3.3;SIMULATION RESULTS;41
7.3.4;ACKNOWLEDGEMENTS;42
7.3.5;REFERENCES;42
8;PART 3: TEMPORAL REASONING;44
8.1;CHAPTER 6. KNOWLEDGE-BASED REAL TIME CONTROL: THE USE OF ABSTRACTION TO SATISFY DEADLINES¹;44
8.1.1;KNOWLEDGE-BASED REAL TIME CONTROL;44
8.1.2;MODELLING PHYSICAL SYSTEMS;45
8.1.3;PROCESSING PRIME AND DOMAIN MODELS;46
8.1.4;MODEL PROCESSING IN THE BBl ARCHITECTURE;47
8.1.5;GENERATING ABSTRACT MODELS;47
8.1.6;ON-LINE USE OF MODELS;49
8.1.7;EXAMPLES;49
8.1.8;CONCLUSIONS;51
8.1.9;REFERENCES;51
8.2;CHAPTER 7. MODEL-BASED DIAGNOSIS OF COMPLEX SYSTEMS:
STRUCTURING AND TEMPORAL REASONING;52
8.2.1;INTRODUCTION;52
8.2.2;KNOWLEDGE REPRESENTATION;52
8.2.3;INFERENCE MECHANISM;54
8.2.4;CONCLUSION;55
8.2.5;REFERENCES;56
8.3;CHAPTER 8. EXPLICIT CLOCK TEMPORAL LOGIC IN CONSTRAINT
CHECKING FOR REAL-TIME SYSTEMS;58
8.3.1;INTRODUCTION;58
8.3.2;EXPLICIT CLOCK TEMPORAL LOGIC;59
8.3.3;EXTERNAL CLOCKS AND TIMED BEHAVIORS;60
8.3.4;A CONSTRAINER FOR A REALTIME DATABASE;61
8.3.5;CONSISTENCY, INTEGRITY, AND KNOWLEDGEABILITY ISSUES;63
8.3.6;EXAMPLE CONTROLLER;66
8.3.7;CONCLUSION;67
8.3.8;REFERENCES;67
8.3.9;APPENDIX;69
9;PART 4: METHODOLOGY;70
9.1;CHAPTER 9. PLANNING FOR EMBEDDED SYSTEMS:
A REAL-TIME PROSPECTIVE;70
9.1.1;1 Introduction;70
9.1.2;2 Levels of Reactive Control;71
9.1.3;3 The TRA Model;71
9.1.4;4 TRA-based Specification;76
9.1.5;5 TRA-based Planning;77
9.1.6;6 Conclusion;78
9.1.7;References;78
9.2;CHAPTER 10. A UNIFIELD APPROXIMATE REASONING APPROACH FOR
REAL-TIME EXPERT CONTROL SYSTEM APPLICATIONS;80
9.2.1;INTRODUCTION;80
9.2.2;REASONING MODELS;80
9.2.3;RULE AGGREGATION;82
9.2.4;REASONING WITH SENSOR-BASED DATA;83
9.2.5;CONCLUDING REMARKS;84
9.2.6;REFERENCES;84
9.3;CHAPTER 11. USING ATMS ALGORITHMS FOR REAL-TIME APPLICATIONS;92
9.3.1;ABSTRACT;92
9.3.2;KEYWORDS;92
9.3.3;INTRODUCTION;92
9.3.4;1. ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEMS;93
9.3.5;2· A TOY EXAMPLE IN LOGIC CIRCUITS;94
9.3.6;3. A REAL APPLICATION IN RAILWAY TRAFFIC CONTROL;95
9.3.7;CONCLUSIONS;96
9.3.8;Acknowledgements;96
9.3.9;REFERENCES;96
9.4;CHAPTER 12. SOFTWARE TOOLS FOR DISTRIBUTED INTELLIGENT
CONTROL SYSTEMS;98
9.4.1;1. INTELLIGENT CONTROL TODAY;98
9.4.2;2. NEAR-TERM APPLICATIONS OF AI TO CONTROL ENGINEERING;98
9.4.3;3. COMPUTER-AIDED CONTROL ENGINEERING;99
9.4.4;4. WORKSHOP ON SOFTWARE TOOLS FOR DISTRIBUTED INTELLIGENT CONTROL;100
9.4.5;5. APPLYING THE RESULTS OF THE WORKSHOP;100
9.4.6;6. REFERENCES;100
9.5;CHAPTER 13. SEQUENTIAL FUNCTION CHARTS FOR KNOWLEDGE-BASED, REAL-TIME APPLICATIONS;102
9.5.1;1. Introduction;102
9.5.2;2. G2;103
9.5.3;3. Grafchart elements;103
9.5.4;4. Exceptions;105
9.5.5;5. Implementation;106
9.5.6;6. Applications;107
9.5.7;7.Conclusions;107
9.5.8;References;107
9.6;CHAPTER 14. PHASE SPACE NAVIGATOR: TOWARDS AUTOMATING
CONTROL SYNTHESIS IN PHASE SPACES
FOR NONLINEAR CONTROL SYSTEMS;108
9.6.1;Abstract;108
9.6.2;1 Introduction;108
9.6.3;2 Automatic Control Synthesis in Phase Spaces;109
9.6.4;3 The Automated Control Synthesis Algorithm;110
9.6.5;4 An Example: Stabilizing a Buckling Column;112
9.6.6;5 Conclusions;113
9.6.7;References;113
9.7;CHAPTER 15. NATURAL LANGUAGE INTERFACE FOR
PROCESS CONTROL CENTERS;114
9.7.1;INTRODUCTION;114
9.7.2;NATURAL LANGUAGE INTERFACES;115
9.7.3;KNOWLEDGE BASE;115
9.7.4;DEVELOPED PROTOTYPE;117
9.7.5;APPLICATION EXAMPLES;117
9.7.6;CONCLUSIONS;119
9.7.7;ACKNOWLEDGEMENT;119
9.7.8;REFERENCES;119
9.8;CHAPTER 16. NEURAL-NET AUGMENTATION OF ADAPTIVE
PREDICTIVE CONTROL;120
9.8.1;INTRODUCTION;120
9.8.2;APPROACH;121
9.8.3;RESULTS;121
9.8.4;SUMMARIZING COMMENTS;123
9.8.5;REFERENCES;124
9.9;CHAPTER 17. KNOWLEDGE REPRESENTATION FOR REAL-TIME ON-LINE
INDUSTRIAL INSPECTION SYSTEMS;126
9.9.1;INTRODUCTION;126
9.9.2;KNOWLEDGE REPRESENTATION AND ACQUISITION;126
9.9.3;KNOWLEDGE REPRESENTATION AND REASONING;127
9.9.4;AN EXPERIMENT IN ON-LINE INSPECTION;129
9.9.5;CONCLUSION;129
9.9.6;REFERENCES;129
10;PART 5: QUALITATIVE REASONING;132
10.1;CHAPTER 18. MODELBASED ALARM ANALYSIS USING MFM;132
10.1.1;Abstract;132
10.1.2;An Introduction to MFM;132
10.1.3;The Basic Flow Functions;133
10.1.4;Connection of Flow Functions;133
10.1.5;Failure Conditions for Flow Functions;133
10.1.6;A Method for Alarm Analysis;134
10.1.7;Possible Secondary Alarms;134
10.1.8;Unknown Alarm States;135
10.1.9;Measurement Errors;135
10.1.10;Generation of Alarms;135
10.1.11;An MFM Toolbox in G2;136
10.1.12;An Example—The Tanks Process;136
10.1.13;Experimental Experiences;137
10.1.14;Conclusions;137
10.1.15;Acknowledgements;137
10.1.16;References;137
10.2;CHAPTER 19. STRUCTURAL ESTIMATION WITH THE HYBRID
PHENOMENA THEORY;138
10.2.1;INTRODUCTION;138
10.2.2;THREE KINDS OF STRUCTURE;138
10.2.3;THE HYBRID PHENOMENA THEORY;139
10.2.4;STRUCTURAL ESTIMATION;142
10.2.5;CONCLUSION AND FUTURE WORK;143
10.2.6;REFERENCES;143
10.3;CHAPTER 20. METHOD OF INDUCING RULES FOR FUZZY CONTROLLERS;144
10.3.1;INTRODUCTION;144
10.3.2;RULE INDUCTION METHOD;145
10.3.3;SYSTEM IMPLEMENTATION: FUZZY CONTROL SYNTHESIZED SOFTWARE (FCSS);145
10.3.4;APPLICATIONS;146
10.3.5;ACKNOWLEDGMENTS;149
10.3.6;REFERENCES;149
11;PART 6: APPLICATIONS;150
11.1;CHAPTER 21. RECOVERY BOILER INTELLIGENT CONTROL;150
11.1.1;INTRODUCTION;150
11.1.2;RECOVERY BOILER PLANT;150
11.1.3;GENERAL CONCEPTS OF THE SYSTEM;151
11.1.4;DETAILED DESCRIPTION OF THE CONTROL ALGORITHM;151
11.1.5;SIMULATIONS;154
11.1.6;CONCLUSION;154
11.1.7;REFERENCES;154
11.2;CHAPTER 22. FLANEX - A FLOW LINE ANALYZING EXPERT SYSTEM;156
11.2.1;INTRODUCTION;156
11.2.2;SYSTEM DESCRIPTION;156
11.2.3;ANALYSE - THE ANALYZING SUBSYSTEM OF FLANEX;157
11.2.4;THE USER INTERFACE ELIAS;158
11.2.5;CONCLUSION;159
11.2.6;REFERENCES;159
11.2.7;ACKNOWLEDGEMENTS;159
11.3;CHAPTER 23. APPLICATIONS OF INTELLIGENT TELEROBOTIC
CONTROL;160
11.3.1;INTRODUCTION;160
11.3.2;TELEROBOTICS APPLICATIONS LABORATORY;160
11.3.3;WASTE SORTING;161
11.3.4;SUMMARY AND CONCLUSIONS;161
11.3.5;REFERENCES;161
11.4;CHAPTER 24. SLAB REHEATING FURNACE TEMPERATURE CONTROL
USING AI;164
11.4.1;INTRODUCTION;164
11.4.2;PROBLEMS OF CONVENTIONAL ACC;165
11.4.3;PURPOSE OF INTRODUCTION OF AI;165
11.4.4;CONFIGURATION OF SYSTEM;165
11.4.5;EVALUATION;166
11.4.6;TOOL FOR REALTIME AI;166
11.4.7;CONCLUSION;168
11.4.8;REFERENCES;168
11.5;CHAPTER 25. PROCESS CONTROL SYSTEM FOR BLAST FURNACE
BASED ON ARTIFICIAL INTELLIGENCE;170
11.5.1;INTRODUCTION;170
11.5.2;OUTLINE OF THE EXPERT SYSTEM;171
11.5.3;FURNACE CONDITION INFERENCE PROCESS;171
11.5.4;THE KNOWLEDGE MODEL;172
11.5.5;ADAPTIVE IDENTIFICATION MODEL;173
11.5.6;APPLICATION;173
11.5.7;CONCLUSION;174
11.5.8;REFERENCES;174
12;AUTHOR INDEX;176
13;KEYWORD INDEX;178



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.