E-Book, Englisch, 989 Seiten
Rizzi / Andrisano / Leali Design Tools and Methods in Industrial Engineering
1. Auflage 2020
ISBN: 978-3-030-31154-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019, September 9-10, 2019, Modena, Italy
E-Book, Englisch, 989 Seiten
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-3-030-31154-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book reports on cutting-edge design methods and tools in industrial engineering, advanced findings in mechanics and material science, and relevant technological applications. Topics span from geometric modelling tools to applications of virtual/augmented reality, from interactive design to ergonomics, human factors research and reverse engineering. Further topics include integrated design and optimization methods, as well as experimental validation techniques for product, processes and systems development, such as additive manufacturing technologies. This book is based on the International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019, held on September 9-10, 2019, in Modena, Italy, and organized by the Italian Association of Design Methods and Tools for Industrial Engineering, and the Department of Engineering 'Enzo Ferrari' of the University of Modena and Reggio Emilia, Italy. It provides academics and professionals with a timely overview and extensive information on trends and technologies in industrial design and manufacturing.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Letter to the Authors;7
3;Introduction;9
4;Organization;11
4.1;Organizing Committee;11
4.2;Scientific Committee;11
4.3;Conference Chair;11
4.4;Honorary Chair;11
4.5;Conference Program Chair;11
4.6;Members;12
4.7;Reviewers;13
5;Contents;14
6;Geometric Modelling and Analysis;23
7;Shape and Texture Analysis of Radiomic Data for Computer-Assisted Diagnosis and Prognostication: An Overview;24
7.1;1 Introduction;24
7.2;2 Methods;25
7.2.1;2.1 Image Acquisition;25
7.2.2;2.2 Pre-processing;26
7.2.3;2.3 Segmentation;27
7.2.4;2.4 Feature Extraction;27
7.2.5;2.5 Post-processing;30
7.2.6;2.6 Data Analysis/Classification;30
7.3;3 Discussion;31
7.4;4 Conclusions;31
7.5;References;32
8;Mandible Morphing Through Principal Components Analysis;36
8.1;Abstract;36
8.2;1 Introduction;36
8.3;2 Materials and Methods;37
8.3.1;2.1 3D Mandible Models from CT Scans;37
8.3.2;2.2 Principal Components Analysis;39
8.3.3;2.3 Evaluation of Reconstruction Accuracy;40
8.4;3 Results and Discussion;40
8.4.1;3.1 Principal Component Analysis;40
8.4.2;3.2 Reconstruction Accuracy;41
8.5;4 Conclusions;43
8.6;References;43
9;Flying Shape Sails Analysis by Radial Basis Functions Mesh Morphing;45
9.1;Abstract;45
9.2;1 Introduction;45
9.3;2 Geometric Parametrization Based on RBF-MM;46
9.3.1;2.1 RBF Background Theory;47
9.4;3 Case Study: Spinnaker Heavy Runner S4;49
9.4.1;3.1 Curvatures Sail Parametrization;50
9.4.2;3.2 Determination of Source Points;52
9.4.3;3.3 Fluid Dynamic Model;53
9.5;4 Results and Discussion;54
9.6;5 Conclusions;55
9.7;Funding Statement;55
9.8;References;55
10;Effect of Cell Shape on Nanoindentation Measurements;58
10.1;Abstract;58
10.2;1 Introduction;59
10.3;2 Materials and Methods;60
10.4;3 Results and Discussion;62
10.5;4 Conclusions;64
10.6;References;64
11;Industrial Design and Ergonomics;66
12;Nature Inspired Redesign of the Visual Appearance of an Industrial Product;67
12.1;Abstract;67
12.2;1 Introduction;67
12.3;2 Background of the Product;68
12.4;3 Methodology;70
12.4.1;3.1 Methodological Scheme;70
12.4.2;3.2 Design Process;71
12.4.3;3.3 Manufacturing Process;74
12.5;4 Results;75
12.6;5 Conclusions;76
12.7;Acknowledgment;77
12.8;References;77
13;Perceived Comfort and Muscular Activity: A Virtual Assessment of Possible Correlations;79
13.1;Abstract;79
13.2;1 Introduction;79
13.3;2 Materials and Methods;80
13.3.1;2.1 Comfort Curves with CaMAN Software;80
13.3.2;2.2 Human Body Simulation with ANYBODY;80
13.3.3;2.3 Muscle Activity and Muscle Recruitment;82
13.4;3 Simulations and Results;83
13.4.1;3.1 Comfort-Muscle Activity Correlations;85
13.5;4 Conclusions;89
13.6;References;90
14;Experimental Comfort Assessment of a T-Shirt for Roadrunner;91
14.1;Abstract;91
14.2;1 Introduction;91
14.2.1;1.1 The Current State of Art and Alternative Solution;92
14.3;2 Materials and Methods;93
14.3.1;2.1 Human Modelling and Data Acquisition;94
14.3.2;2.2 Ergonomic Assessment and Comfort Evaluation;95
14.4;3 Results and Conclusions;96
14.5;References;100
15;Virtual Reality and Interactive Design;102
16;Dynamic Projection for the Design of an Adaptive Museum Guide;103
16.1;Abstract;103
16.2;1 Introduction;103
16.3;2 Research Background;105
16.4;3 A SAR Application for Enhance Experience with Renaissance Visual Artworks;106
16.4.1;3.1 The Proposed Technological Architecture;106
16.4.2;3.2 Use Case Scenarios;108
16.5;4 Conclusion and Further Challenges;110
16.6;Acknowledgements;111
16.7;References;111
17;Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application;113
17.1;Abstract;113
17.2;1 Introduction;113
17.3;2 Brief Overview of Related Works;114
17.4;3 The Software Applications;116
17.4.1;3.1 pViewer;117
17.4.2;3.2 pTracker;118
17.5;4 Conclusions;120
17.6;References;121
18;Informing the Use of Visual Assets in Industrial Augmented Reality;124
18.1;Abstract;124
18.2;1 Introduction;124
18.3;2 Visual Assets;126
18.3.1;2.1 Text;126
18.3.2;2.2 Signs;126
18.3.3;2.3 Photographs;126
18.3.4;2.4 Videos;127
18.3.5;2.5 Drawings;128
18.3.6;2.6 Technical Drawings;128
18.3.7;2.7 Product Models;128
18.3.8;2.8 Auxiliary Models;128
18.4;3 Heuristic Evaluation of Visual Assets;128
18.4.1;3.1 Text;129
18.4.2;3.2 Signs;130
18.4.3;3.3 Photographs;130
18.4.4;3.4 Videos;131
18.4.5;3.5 Drawings;131
18.4.6;3.6 Technical Drawings;131
18.4.7;3.7 Product Models;132
18.4.8;3.8 Auxiliary Models;132
18.5;4 Results of Heuristic Evaluation;133
18.6;5 Conclusion;134
18.7;References;135
19;Integrated Design Tools for Model-Based Development of Innovative Vehicle Chassis and Powertrain Systems;136
19.1;Abstract;136
19.2;1 Introduction;136
19.3;2 The Design Process;137
19.3.1;2.1 Extension of the Model-Based Design Concept;137
19.3.2;2.2 Key Factors and Previous Work;137
19.3.3;2.3 Features and Interface of the Tool for Steering and Suspension Design;138
19.3.4;2.4 Additional Tools for Driver-In-the-Loop Simulation;140
19.3.5;2.5 The Virtual Testing Process;143
19.3.6;2.6 Applications;144
19.4;3 Conclusions;144
19.5;References;145
20;A Handheld Mobile Augmented Reality Tool for On-Site Piping Assembly Inspection;147
20.1;Abstract;147
20.2;1 Introduction;147
20.3;2 Mobile Computing Platforms for AR Applications;148
20.4;3 ARCore;149
20.5;4 Mobile AR Tool;149
20.5.1;4.1 User Interface;151
20.6;5 Experimentation;152
20.6.1;5.1 Results and Discussions;154
20.7;6 Conclusions;156
20.8;References;156
21;Multisensory Augmented Reality Experiences for Cultural Heritage Exhibitions;158
21.1;Abstract;158
21.2;1 Introduction;158
21.3;2 Literature Review;160
21.3.1;2.1 Multisensory Perception;160
21.3.2;2.2 Olfactory Displays for Virtual and Augmented Reality Environments;160
21.3.3;2.3 Multisensory, Interactive and Digital Exhibitions;161
21.4;3 Case Studies;162
21.4.1;3.1 The Stati d’animo - A new AR olfactory experience Case Study;162
21.4.2;3.2 The Senses of Religions Case Study;165
21.5;4 Conclusions;167
21.6;References;168
22;Reverse Engineering, Digital Acquisition and Inspection;170
23;Optical Stereo-System for Full-Field High-Frequency 3D Vibration Measurements Based on Low-Frame-Rate Cameras;171
23.1;Abstract;171
23.2;1 Introduction;171
23.3;2 Measurement Strategy;172
23.3.1;2.1 Physical Principle;172
23.3.2;2.2 Down-Sampling Approach;173
23.4;3 Optical Setup;174
23.5;4 Results and Discussion;175
23.5.1;4.1 Static Measurements;175
23.5.2;4.2 Dynamic Measurements;176
23.6;5 Conclusions;179
23.7;Acknowledgments;179
23.8;References;179
24;CAD Reconstruction: A Study on Reverse Modelling Strategies;181
24.1;Abstract;181
24.2;1 Introduction;181
24.3;2 Design Intent: The Human Factor;183
24.4;3 Reverse Modelling;184
24.5;4 Conclusions;191
24.6;References;192
25;3D Scanning Procedure for the Evaluation of Lymphedema of Upper Limbs Using Low-Cost Technolgy: A Preliminary Study;193
25.1;Abstract;193
25.2;1 Introduction;193
25.3;2 Scientific Background;194
25.4;3 Method and Tools;196
25.4.1;3.1 3D Scanning Procedure;197
25.4.2;3.2 Developed Application: Lym 3DLab;198
25.5;4 Preliminary Test;200
25.6;5 Conclusion;202
25.7;References;202
26;Low Cost Device to Perform 3D Acquisitions Based on ChAruCo Markers;205
26.1;Abstract;205
26.2;1 Introduction;205
26.3;2 Overall Description;206
26.4;3 Procedure Description;208
26.4.1;3.1 Marker Detection and Pose Estimation;208
26.4.2;3.2 Laser Line Detection;211
26.4.3;3.3 Triangulation;213
26.5;4 Hardware;213
26.6;5 Conclusions;215
26.7;References;215
27;Automatic Segmentation of Constant Radius Secondary Features from Real Objects;217
27.1;Abstract;217
27.2;1 Introduction;217
27.3;2 The Concept of Constant Radius Secondary Feature (CRSF);219
27.4;3 The Fuzzy Approach for CRSF Recognition;222
27.5;4 Region Growing;224
27.6;5 Discussion and Conclusions;225
27.7;References;227
28;Comparison of Algorithms for Recognition of Cylindrical Features in a Voxel-Based Approach for Tolerance Inspection;229
28.1;Abstract;229
28.2;1 Introduction;229
28.3;2 Previous Developments;230
28.3.1;2.1 Voxel Structure;230
28.3.2;2.2 Voxel Surface Analysis;231
28.3.3;2.3 Region Growing;232
28.4;3 Fitting of Cylindrical Surfaces Inside Curved Voxels;233
28.4.1;3.1 LM(Kasa) Approach;233
28.4.2;3.2 RANSAC Approach;233
28.5;4 Set-Up and Evaluation of the Algorithms Through Case Studies;236
28.5.1;4.1 Flange for Aeronautical Applications;236
28.5.2;4.2 Latching Lever;237
28.5.3;4.3 Discussion;239
28.6;5 Conclusions;240
28.7;Acknowledgements;240
28.8;References;240
29;Geometrical Product Specification and Tolerancing;242
30;Tolerance Prediction for Determinate Assembly Approach in Aeronautical Field;243
30.1;Abstract;243
30.2;1 Introduction;243
30.3;2 State of Art: Traditional Assembly Issues;244
30.4;3 Tolerance Prediction and Determinant Approach;246
30.5;4 Assemblability Computation;250
30.6;5 Conclusion;253
30.7;References;253
31;Robust Parameter Analysis of Compliant Part Models for Computer Aided Tolerancing;255
31.1;Abstract;255
31.2;1 Introduction;255
31.3;2 Method;257
31.3.1;2.1 Computer-Aided Tolerancing Workflow;257
31.3.2;2.2 The Variational Model;258
31.3.3;2.3 CAT Modelling and Simulation Factors;260
31.4;3 Case Study on a Car Fender Assembly;262
31.4.1;3.1 Automotive Fender Characteristics;262
31.4.2;3.2 Design of Experiments: Factors, Levels, and Responses;263
31.5;4 Results Discussion and Conclusions;265
31.6;References;267
32;Design for Manufacturing and Assembly;269
33;An Improved Design Method for Net-Shape Manufacturing in Powder Metallurgy;270
33.1;Abstract;270
33.2;1 Introduction;270
33.3;2 Dimensional Change on Sintering;272
33.3.1;2.1 Influence of Material;272
33.3.2;2.2 Influence of Process Parameters;273
33.3.3;2.3 Influence of Geometry;274
33.4;3 Design Method to Predict Anisotropic Dimensional Changes;275
33.5;4 Design Method Applied to a Real Part;277
33.5.1;4.1 Tolerance Classes;278
33.6;5 Conclusions;279
33.7;References;279
34;Design for Assembly in the Conceptual Development of Aircraft Systems;281
34.1;Abstract;281
34.2;1 Introduction and Context;281
34.3;2 Materials and Methods;283
34.3.1;2.1 Conceptual Design for Assembly Framework;283
34.3.2;2.2 Assembly Attributes and Domains;285
34.3.3;2.3 Knowledge Formalization;285
34.4;3 Case Study;286
34.5;4 Results;287
34.6;5 Conclusions;289
34.7;References;290
35;A Knowledge Formalization Approach for Manufacturing Cost Estimation;292
35.1;Abstract;292
35.2;1 Introduction and State of the Art;292
35.3;2 The Knowledge Formalization Approach;294
35.3.1;2.1 Manufacturing Cost Breakdown Data Structure;294
35.3.2;2.2 Procedure for Manufacturing Process Estimation;296
35.3.3;2.3 Manufacturing Cost Model;298
35.4;3 Achievements and Benefits;300
35.5;4 Conclusions;301
35.6;Appendix 1: Open-Die Forging Cost Model;302
35.7;References;303
36;Vibration-Assisted Face Grinding of Mould Steel;304
36.1;Abstract;304
36.2;1 Introduction;304
36.3;2 Experimental Methodology;306
36.4;3 Results;310
36.5;4 Summary and Outlook;314
36.6;References;315
37;Virtual Design for Assembly Improving the Product Design of a Two-Way Relief Valve;317
37.1;Abstract;317
37.2;1 Introduction;317
37.3;2 DFA Guidelines;318
37.4;3 DFA’s Methods Analysis;320
37.5;4 Methods Application to the Two-Way Relief Valve;320
37.6;5 Valve Optimization: Results;322
37.6.1;5.1 AEM Method;324
37.6.2;5.2 DFA Method;325
37.6.3;5.3 LUCAS Method;325
37.7;6 Conclusion;327
37.8;References;327
38;Integrated Product and Process Design;328
39;Improving the Shoes Customization Process Through a Digitally-Enabled Framework;329
39.1;Abstract;329
39.2;1 Introduction;329
39.3;2 The AS-IS Shoes Customization Process;331
39.4;3 The Digitally-Enabled Shoes Customization Process;333
39.4.1;3.1 The Proposed Customization Framework;333
39.4.2;3.2 The Proposed Shoes Customization Workflow;335
39.5;4 Framework Implementation and Discussion of Potential Benefits and Limitations;336
39.5.1;4.1 Preliminary Implementation in an Italian Shoe Manufacturer;336
39.5.2;4.2 Benefits and Limitations Related to the Framework Implementation;338
39.6;5 Conclusions;339
39.7;References;340
40;Conceptual Design of a Functional Orthodontic Appliance for the Correction of Skeletal Class II Malocclusion;341
40.1;Abstract;341
40.2;1 Introduction;341
40.3;2 Background;342
40.3.1;2.1 Malocclusion and Functional Appliances;342
40.3.2;2.2 Systematic Approaches for Conceptual Design;343
40.4;3 The Proposed Design Methodology and the Case Study;345
40.4.1;3.1 Collect Data;346
40.4.2;3.2 Generate Functions;348
40.4.3;3.3 Generate Concepts;350
40.5;4 Conclusions;351
40.6;Acknowledgments;352
40.7;References;352
41;ANOVA Applied to the Taguchi Method: A New Interpretation;354
41.1;Abstract;354
41.2;1 Introduction;354
41.3;2 Definition of the Problem;355
41.3.1;2.1 The ANOVA Identity;356
41.3.2;2.2 The ANOVA Identity Applied to Each Parameter;356
41.3.3;2.3 The Basic Relation of ANOVA Applied to the Taguchi Method;358
41.3.4;2.4 Discussion on the Such Basic Relations;359
41.4;3 Re Elaboration of the Results on a Test Case;360
41.5;4 Conclusion;363
41.6;Acknowledgements;363
41.7;References;363
42;Proposal of a Framework Based on Continuous Brainwriting to Expand Mindfulness in Concept Generation;364
42.1;Abstract;364
42.2;1 Introduction;364
42.3;2 Conceptual Design Experience;365
42.4;3 Proposal of a Framework to Support Creativity;369
42.5;4 Discussion and Conclusions;371
42.6;Acknowledgements;371
42.7;References;371
43;Morphological and Mechanical Characterization of P-Scaffolds with Different Porosity;373
43.1;Abstract;373
43.2;1 Introduction;373
43.3;2 Materials and Methods;376
43.3.1;2.1 P-Scaffold Modelling;376
43.3.2;2.2 Experimental Characterization of P-Scaffold;377
43.3.3;2.3 FEM Analysis;378
43.4;3 Results and Discussions;378
43.4.1;3.1 MicroComputed Tomography (MicroCT);378
43.4.2;3.2 Numerical and Experimental Mechanical Characterization;380
43.5;4 Conclusions;382
43.6;References;383
44;Automotive Design Engineering: Material and Processes Selection Problems;385
44.1;Abstract;385
44.2;1 Introduction;385
44.3;2 Analysis of Decision-Based Applications in Automotive Engineering Design: Selection Problems in the Detail Design;386
44.3.1;2.1 The Review Method;386
44.3.2;2.2 Identification of Engineering Design Key Words;387
44.3.3;2.3 Detail Design: Material Selection;387
44.3.4;2.4 Detail Design: Manufacturing Process Selection;390
44.4;3 Discussion and Conclusions;392
44.5;References;392
45;Integrated Methods for System Design, Simulation, Analysis and Optimization;397
46;Development of an Exhaust System for Agricultural Tractors;398
46.1;Abstract;398
46.2;1 Introduction;398
46.3;2 Materials and Methods;399
46.4;3 Results and Discussion;401
46.4.1;3.1 Acoustic and Mechanical Design of the New Exhaust System;401
46.4.2;3.2 Experimental Validation;408
46.5;4 Conclusions;409
46.6;References;409
47;A Topology Optimization of a Motorsport Safety Device;411
47.1;Abstract;411
47.2;1 Introduction;411
47.3;2 Materials and Methods;412
47.3.1;2.1 The Topology Optimization Method;412
47.3.2;2.2 Geometry Acquisition;414
47.3.3;2.3 The Material;414
47.3.4;2.4 The FE Model;415
47.4;3 Results and Discussion;416
47.4.1;3.1 The Topology Optimization;416
47.5;4 Conclusions;419
47.6;References;419
48;A Cooperative Monitoring System for Diver Global Localization and Operation Support;421
48.1;Abstract;421
48.2;1 Introduction;421
48.3;2 Competitive and Technological Reference Context;423
48.4;3 Project Overview;424
48.5;4 Remote Supervision and Control Unit;427
48.6;5 Underwater Tablet;427
48.7;6 Autonomous Surface Vehicle;429
48.8;7 Conclusions;430
48.9;Acknowledgements;430
48.10;References;431
49;Design and Simulation of the Hull of a Small-Sized Autonomous Surface Vehicle for Seabed Mapping;433
49.1;Abstract;433
49.2;1 Introduction;434
49.3;2 Hull Design;434
49.4;3 CFD Analysis;436
49.5;4 Model Validation in a Recirculating Water Channel;439
49.5.1;4.1 Prototyping;440
49.5.2;4.2 Experimental Setup;440
49.5.3;4.3 Test;441
49.6;5 Conclusions;441
49.7;References;442
50;Machine Health State Recognition Through Images Classification with Neural Network for Condition-Based Maintenance;443
50.1;1 Introduction;443
50.2;2 Background;444
50.3;3 Introduction to the Case Study: Retail Refrigerators;445
50.3.1;3.1 Refrigerators and Their Working Principle;445
50.3.2;3.2 Failures Modeling;447
50.4;4 Image Generation and Setup of the Virtual Experiments;448
50.5;5 Discussion of the Results;451
50.6;6 Conclusions;453
50.7;References;453
51;Mechanics–Based Virtual Prototyping of Robots with Deformable Bodies and Flexible Joints;455
51.1;1 Introduction;455
51.2;2 The Mechanics–Based Method for Virtual Prototyping of Soft Robots;457
51.2.1;2.1 The Geometric Finite Element Approach for Modeling of Soft Articulated and Soft–Bodied Robots;458
51.2.2;2.2 Equations of Motion;459
51.3;3 Example;459
51.4;4 Applications;462
51.4.1;4.1 Serial/Parallel Soft Articulated Robot for Remote Transportation of Large Payloads;463
51.4.2;4.2 Hyper–redundant Soft Articulated Robot for Remote Inspection and Maintenance;463
51.4.3;4.3 Soft Continuum Robot for Intravascular Shaping Operations;463
51.4.4;4.4 Soft Actuators for Rehabilitation Robots;465
51.5;5 Three Major Challenges;465
51.5.1;5.1 Conceptual Design Tools;465
51.5.2;5.2 Integrated Software Tools for Design, Analysis and Control;466
51.5.3;5.3 Interactive and Real–Time Virtual Simulation Tools;466
51.6;6 Conclusions;466
51.7;References;467
52;Virtual Prototyping Design Method to Optimize Mechanical Spring Devices for MV Switch Disconnector;469
52.1;Abstract;469
52.2;1 Introduction;469
52.3;2 Mechanical Spring Device;470
52.4;3 Parametric Modelling and Optimization;474
52.4.1;3.1 DOE Optimization;474
52.4.2;3.2 Optimality Criteria;476
52.5;4 Result;478
52.6;5 Conclusions;479
52.7;References;479
53;Design and Process Optimization of a Sintered Joint for Power Electronics Automotive Applications;481
53.1;1 Introduction;481
53.2;2 Methods;483
53.3;3 Sample Preparation;483
53.4;4 Experimental Characterization;484
53.5;5 Modelling;486
53.5.1;5.1 Sintering Unit Cell: CAD and FE Model;486
53.5.2;5.2 Thermal Shocks Simulation;488
53.6;6 Conclusion;489
53.7;References;490
54;An Integrated Approach to Optimize Power Device Performances by Means of Stress Engineering;492
54.1;1 Introduction;492
54.2;2 Device Description;494
54.3;3 Warpage Measurement;495
54.3.1;3.1 Mathematical Model;495
54.3.2;3.2 Experimental Procedure;497
54.4;4 Modeling and Experimental Correlation;497
54.4.1;4.1 Finite Element Model;497
54.4.2;4.2 Piezoresistive Effect;499
54.5;5 Conclusion;500
54.6;References;500
55;Iterative and Participative Axiomatic Design Process to Improve Conceptual Design of Large-Scale Engineering Systems;503
55.1;Abstract;503
55.2;1 Introduction;504
55.3;2 An Innovative AD Process: IPADeP;505
55.3.1;2.1 Motivation;505
55.3.2;2.2 Iterative and Participative Axiomatic Design Process;507
55.3.2.1;2.2.1 First Iteration;508
55.3.2.2;2.2.2 Subsequent Iterations;510
55.4;3 Design Progress of DEMO Divertor Cassette to Vacuum Vessel Locking System;510
55.4.1;3.1 Third Iteration;511
55.5;4 Conclusions;514
55.6;References;515
56;Industrial Noise Modelling and Control: The Case of Natural Gas Distribution Systems;517
56.1;Abstract;517
56.2;1 Introduction;517
56.3;2 The Tartarini Algorithm;518
56.4;3 Attenuations Due to the Containment Box;520
56.5;4 Algorithm’s Validation Procedure;521
56.6;5 Comparison Between Measured and Simulated Results;522
56.7;6 A New Simplified Acoustic Impact Assessment Procedure;523
56.7.1;6.1 Design and Implementation of an Automated Tool for Simulation;524
56.8;7 Conclusions;525
56.9;Acknowledgment;525
56.10;References;525
57;Design Optimization: Tools and Methods for ETO Products;527
57.1;Abstract;527
57.2;1 Introduction;527
57.3;2 Materials and Methods;529
57.4;3 Test Case;532
57.4.1;3.1 Configurations;532
57.4.2;3.2 CSP;533
57.4.3;3.3 CAD Automation;534
57.4.4;3.4 Optimization;536
57.5;4 Conclusions;537
57.6;References;537
58;Design and Optimization of the Thermo-Mechanical Behavior in Glass Reinforced Polyamide 6 for Automotive Application;539
58.1;Abstract;539
58.2;1 Introduction;539
58.3;2 Materials and Methods;541
58.3.1;2.1 Composite’s Fabrication;541
58.3.2;2.2 Characterization;541
58.4;3 Calculation;542
58.5;4 Results and Discussion;543
58.6;5 Conclusion;548
58.7;Acknowledgements;548
58.8;References;548
59;A Fiber Optic Strain Gage Sensor for Measuring Preload in Thick Composite Bolted Joints;551
59.1;Abstract;551
59.2;1 Introduction;551
59.3;2 Instrumentation of the Bolt;553
59.4;3 Experimental Tests;556
59.5;4 Numerical Analysis;557
59.6;5 Conclusions;560
59.7;References;561
60;How to Classify Compliant Mechanisms;563
60.1;Abstract;563
60.2;1 Introduction;563
60.3;2 Compliant Mechanisms Classification According to FBS;565
60.4;3 Literature Survey According to FBS Classification;567
60.5;4 Single Compliants Family Classification;571
60.6;5 Proposal for an Universal Compliants Family Classification;573
60.7;6 Conclusions and Future Developments;574
60.8;References;575
61;Condition Monitoring Techniques of Ball Bearings in Non-stationary Conditions;576
61.1;Abstract;576
61.2;1 Introduction;576
61.3;2 Methods Based on the Mechanical Model of the Defect;577
61.3.1;2.1 Computed Order Tracking;578
61.3.2;2.2 Cross-Correlation Function;579
61.4;3 Expert Systems;581
61.4.1;3.1 Artificial Neural Networks;582
61.4.2;3.2 Artificial Immune Systems;582
61.4.3;3.3 Support Vector Machines;582
61.5;4 Conclusions;584
61.6;References;585
62;A CAE-Based Model of Aluminium Alloys Welded T-Joints for TEP Analysis;588
62.1;Abstract;588
62.2;1 Introduction;588
62.3;2 CAE-Base Predictive Model for TEP Analysis;592
62.4;3 Welding T-Joint Model and Experimental Setup;593
62.5;4 Results;596
62.6;5 Conclusion;598
62.7;References;599
63;Dynamic Modelling of Mechanical System for the Packaging Industry;600
63.1;Abstract;600
63.2;1 Introduction;600
63.3;2 Model;601
63.4;3 Test Rig;603
63.5;4 Results;605
63.6;5 Conclusion;607
63.7;References;608
64;Experimental Methods in Product Development;609
65;How Do Design Changes and the Perception of Product Creativity Affect Value?;610
65.1;Abstract;610
65.2;1 Introduction and Background;610
65.3;2 Experiments and Sources of Data for the Present Investigation;612
65.4;3 Statistical Analysis and Main Outcomes;614
65.4.1;3.1 Procedure to Obtain Statistical Evidence;614
65.4.2;3.2 Most Meaningful Results;614
65.5;4 Discussions;616
65.5.1;4.1 Comments on the Results;616
65.5.2;4.2 Limitations;617
65.6;5 Final Remarks;618
65.7;Acknowledgements;618
65.8;References;619
66;Improving the Efficiency of Design Protocol Analysis: An Approach to Speed Up the Coding Stage;621
66.1;Abstract;621
66.2;1 Introduction;621
66.3;2 Tools and Instruments to Support Protocol Analysis;622
66.4;3 A Coding Scheme to Map the Superficial Characteristics of Products and Related Designers’ Intentions;624
66.5;4 Tables and Decision Tree to Improve Coding Efficiency;625
66.6;5 Experimental Application and Related Results;628
66.6.1;5.1 Description of Experimental Case Studies and Setting;628
66.6.2;5.2 Profile and Role of the Involved Coders;628
66.6.3;5.3 Results of the Investigation;629
66.7;6 Conclusions;631
66.8;Acknowledgements;632
66.9;References;632
67;Proof of Concept as a Multidisciplinary Design-Based Approach;634
67.1;Abstract;634
67.2;1 Introduction;634
67.2.1;1.1 The Model: Design, Representation, Experimentation and Communication;635
67.2.2;1.2 Devices for Research Purposes;636
67.3;2 Case Histories;636
67.3.1;2.1 The Cosmos Project;636
67.3.2;2.2 Cosmic Ray Detector;638
67.4;3 Conclusions and Laboratory Development Outlook;642
67.5;Acknowledgments;643
67.6;References;644
68;Experimental Study on Nonlinear Random Excitation;646
68.1;Abstract;646
68.2;1 Introduction;647
68.3;2 Setup;648
68.4;3 Test Procedure and Methods;650
68.5;4 Results;651
68.6;5 Conclusions;656
68.7;References;656
69;Knowledge and Product Data Management;658
70;A Knowledge Repository to Support Ecodesign Implementation in Manufacturing Companies;659
70.1;Abstract;659
70.2;1 Introduction;659
70.3;2 State of the Art;660
70.4;3 Methodology and Tool Functions;661
70.5;4 Implementation in Industrial Contexts;664
70.6;5 Result and Discussions;666
70.7;6 Conclusion;667
70.8;References;668
71;Engineering Methods in Human-Related Applications;670
72;Deep CNN for 3D Face Recognition;671
72.1;1 Introduction;671
72.2;2 Methodology;672
72.2.1;2.1 Data Preparation;673
72.2.2;2.2 CNN;675
72.3;3 Results;676
72.4;4 Conclusions;679
72.5;References;680
73;Multiperspective Ergonomic Assessment Approach for Human Centered Workplace Design;681
73.1;Abstract;681
73.2;1 Introduction;681
73.3;2 Method;682
73.4;3 Case Study;686
73.5;4 Results and Discussion;687
73.5.1;4.1 Workstation Re-design;688
73.5.2;4.2 Human Experience Evaluation;689
73.6;5 Conclusions;690
73.7;References;691
74;Towards a Non-invasive Pectus Excavatum Severity Assessment Tool Using a Linear Discriminant Analysis on 3D Optical Data;692
74.1;Abstract;692
74.2;1 Introduction;692
74.3;2 Materials and Methods;693
74.4;3 Data Analysis;697
74.5;4 Conclusions;700
74.6;References;700
75;A Preliminary 3D Depth Camera-Based System to Assist Home Physiotherapy Rehabilitation;702
75.1;Abstract;702
75.2;1 Introduction;702
75.3;2 Methodology;704
75.4;3 Experimental Results;708
75.5;4 Conclusions;709
75.6;Funding;710
75.7;References;710
76;Design of a Customized Neck Orthosis for FDM Manufacturing with a New Sustainable Bio-composite;713
76.1;Abstract;713
76.2;1 Introduction;713
76.3;2 Design Procedure;715
76.4;3 Numerical Assessment of the Customized Cervical Orthoses;717
76.5;4 Additive Manufacturing of a Prototype Cervical Orthosis;721
76.6;5 Conclusions;723
76.7;Acknowledgements;723
76.8;References;723
77;A Multi-layer Approach for the Identification and Evaluation of Collaborative Robotic Workplaces Within Industrial Production Plants;725
77.1;Abstract;725
77.2;1 Introduction;725
77.3;2 State of the Art;726
77.4;3 The Proposed Multi-layer Approach for Process Modelling;727
77.4.1;3.1 The Characterisation of the Multi-layer Approach;729
77.5;4 Conclusions and Future Work;735
77.6;Acknowledgements;735
77.7;References;735
78;Accurate Liver 3D Reconstruction from MRE Images Using Shift-Compensated Volumetric Interpolation;737
78.1;Abstract;737
78.2;1 Introduction;737
78.3;2 Magnetic Resonance Elastography (MRE);738
78.4;3 Optical Flow Based Interpolation;740
78.4.1;3.1 Motion Estimation;741
78.4.2;3.2 Motion Compensated Interpolation;742
78.5;4 Experimental Results;742
78.5.1;4.1 Real Low-Resolution MRE Sequence;744
78.6;5 Conclusion;744
78.7;References;745
79;A Multi-disciplinary Assessments Tool for Human-Machine Interaction;747
79.1;Abstract;747
79.2;1 Introduction;747
79.3;2 Assessment of the Human-Machine Interaction;749
79.4;3 The Multi-dimensional Assessment Matrix;750
79.5;4 The Industrial Case Study;753
79.6;5 Discussion of the Results;756
79.7;6 Conclusions;757
79.8;Acknowledgements;757
79.9;References;757
80;Understanding the Human Motor Control for User-Centered Design of Custom Wearable Systems: Case Studies in Sports, Industry, Rehabilitation;759
80.1;1 Introduction;759
80.2;2 Method;760
80.2.1;2.1 Biomechanics of Human Motion;761
80.2.2;2.2 Neuroscience of Human Motion;762
80.3;3 Examples of Applications;762
80.3.1;3.1 Sports;762
80.3.2;3.2 Industry;763
80.3.3;3.3 Rehabilitation;766
80.4;4 Discussion;767
80.5;5 Conclusions;768
80.6;References;769
81;3D Digital Surgical Planning: An Investigation of Low-Cost Software Tools for Concurrent Design;771
81.1;Abstract;771
81.2;1 Introduction;771
81.3;2 Preoperative Planning Software;775
81.4;3 Materials and Methods;776
81.5;4 Results;776
81.6;5 Conclusions;779
81.7;6 Future Developments;780
81.8;References;780
82;CAD Modeling for Evaluating LVOT Obstruction in Transcatheter Mitral Valve Replacement;782
82.1;Abstract;782
82.2;1 Introduction;782
82.2.1;1.1 Clinical Need;782
82.2.2;1.2 Role of CAD Modeling and Virtual Simulation;783
82.3;2 Methods;784
82.3.1;2.1 Transcatheter Heart Valve Model;784
82.3.2;2.2 Anatomic Heart Segmentation;785
82.3.3;2.3 Workflow of THV Modeling for Neo-LVOT Quantification;786
82.4;3 Results;787
82.4.1;3.1 Case Study #1;787
82.4.2;3.2 Case Study #2;789
82.5;4 Discussion;791
82.6;5 Conclusion;792
82.7;References;792
83;A Reliable Procedure for the Construction of a Statistical Shape Model of the Cranial Vault;794
83.1;Abstract;794
83.2;1 Introduction;794
83.3;2 Statistical Shape Model;797
83.4;3 The Proposed Procedure;799
83.4.1;3.1 Alignment and Scaling;800
83.4.2;3.2 External Crust Selection;801
83.4.3;3.3 Non-rigid ICP;801
83.4.4;3.4 Correspondence;802
83.5;4 Results;803
83.6;5 Discussion and Conclusions;804
83.7;References;804
84;A New Approach to Evaluate the Biomechanical Characteristics of Osseointegrated Dental Implants;807
84.1;Abstract;807
84.2;1 Introduction;807
84.3;2 CAD Modelling;809
84.3.1;2.1 CAD Modelling of the Fixtures;809
84.3.2;2.2 3D Acquisition and CAD Modelling of the Mandible;809
84.4;3 FEM Analyses;810
84.5;4 New Numerical Model to Simulate Different Levels of Osseointegration;813
84.6;5 Conclusions;815
84.7;References;816
85;Biomechanical Analysis of a New Elbow Prosthesis;818
85.1;Abstract;818
85.2;1 Introduction;818
85.3;2 Case Study: Linked Prosthesis LINK Endo-Model®;819
85.3.1;2.1 3D Acquisition and CAD Modelling;820
85.3.2;2.2 Virtual Assembling;821
85.4;3 Musculoskeletal Model;822
85.5;4 FEM Analysis;825
85.5.1;4.1 Results;826
85.6;5 Conclusions;827
85.7;References;827
86;Additive Manufacturing;830
87;Adoption of Additive Technologies by Florence Industries: Designing a Survey Session;831
87.1;Abstract;831
87.2;1 Introduction;831
87.3;2 Surveys as Investigation Tools for Understanding Prototypes and AT;832
87.4;3 Designing the Survey;833
87.5;4 The Designed Survey: First Impressions;836
87.6;5 Discussions;837
87.7;6 Conclusions;838
87.8;Acknowledgments;839
87.9;References;839
88;Properties Enhancement of Carbon PA 3D-Printed Parts by Post-processing Coating-Based Treatments;841
88.1;Abstract;841
88.2;1 Introduction;841
88.3;2 Materials and Methods;842
88.3.1;2.1 Materials and Specimen’s Fabrication;842
88.3.2;2.2 Coating Treatment Process;844
88.3.3;2.3 Water Absorption;845
88.3.4;2.4 Mechanical Tests;846
88.4;3 Experimental Results;846
88.4.1;3.1 Absorption Behaviour;846
88.4.2;3.2 Tensile Behaviour;848
88.5;4 Conclusions;850
88.6;References;851
89;Sensor Embedding in a 3D Printed Flexure Hinge;852
89.1;1 Introduction;852
89.2;2 A Brief Overview on 3D-Printed Compliant Mechanisms;854
89.3;3 Embeddable Sensors for Deformation Measuring;855
89.4;4 Optical Fiber Embedding;856
89.4.1;4.1 First Tests;856
89.4.2;4.2 Micro-holes;857
89.4.3;4.3 Rectangular Cuts;858
89.5;5 Flexure Hinge;858
89.5.1;5.1 The Design;858
89.5.2;5.2 Fiber Embedding and Strains Monitoring;859
89.6;6 Smart FH Testing and Calibration;860
89.7;7 Conclusions;862
89.8;References;862
90;A Virtual Design Process to Produce Scoliosis Braces by Additive Manufacturing;864
90.1;Abstract;864
90.2;1 Introduction;864
90.2.1;1.1 Scoliosis and Brace Treatment;864
90.2.2;1.2 As-Is Manufacturing Process;865
90.2.3;1.3 To-Be Manufacturing with Additive Manufacturing;866
90.2.4;1.4 Proposed Approach for Virtual Modelling;866
90.3;2 Methods and Tools;867
90.3.1;2.1 Virtual Design Process;867
90.3.2;2.2 Polymer 3D Printing;869
90.4;3 Results;870
90.4.1;3.1 Model from Virtual Design Process;870
90.4.2;3.2 Skeleton Model from DICOM;871
90.4.3;3.3 Printed Back Brace;872
90.5;4 Conclusions and Discussion;873
90.6;References;874
91;High Density AlSi10Mg Aluminium Alloy Specimens Obtained by Selective Laser Melting;875
91.1;Abstract;875
91.2;1 Introduction;875
91.3;2 Materials and Methods;877
91.4;3 Results and Discussion;879
91.4.1;3.1 Microstructure;879
91.4.2;3.2 Tensile Tests;881
91.5;4 Conclusions;881
91.6;Acknowledgments;882
91.7;References;882
92;Scale and Shape Effects on the Fatigue Behaviour of Additively Manufactured SS316L Structures: A Preliminary Study;883
92.1;Abstract;883
92.2;1 Introduction;884
92.3;2 Materials and Methods;885
92.3.1;2.1 Specimens;885
92.3.2;2.2 Experimental Tests;887
92.4;3 Results and Discussions;888
92.5;4 Conclusions;892
92.6;Acknowledgments;893
92.7;References;893
93;Additive Manufacturing Challenges and Future Developments in the Next Ten Years;895
93.1;Abstract;895
93.2;1 Introduction;895
93.2.1;1.1 Historical Background;896
93.2.2;1.2 AM Process Terminology and Classification;897
93.3;2 Additive Manufacturing Advantages and Weaknesses;898
93.3.1;2.1 Advantages;898
93.3.2;2.2 Weaknesses;901
93.4;3 Future Challenges and Developments;902
93.5;4 Conclusions;905
93.6;References;905
94;Investigating the Relationships Between Additive Manufacturing and TRIZ: Trends and Perspectives;907
94.1;Abstract;907
94.2;1 Introduction;907
94.3;2 Overview of Additive Manufacturing and TRIZ;908
94.3.1;2.1 Additive Manufacturing;908
94.3.2;2.2 TRIZ - The Theory of Inventive Problem Solving;909
94.4;3 Research Method;909
94.5;4 Data Analysis and Discussion;912
94.6;5 Conclusions and Future Developments;913
94.7;References;914
95;Optimizing the Nozzle Path in the 3D Printing Process;916
95.1;1 Introduction;916
95.2;2 Literature Review;918
95.3;3 The 3D Printing Routing Problem;919
95.4;4 Heuristic Algorithms;921
95.5;5 Computational Results;923
95.6;6 Conclusions and Future Research Directions;925
95.7;References;926
96;A Build-Time Estimator for Additive Manufactured Objects;929
96.1;Abstract;929
96.2;1 Introduction;929
96.3;2 Proposed Method;930
96.4;3 The Results;935
96.5;4 Conclusions;937
96.6;References;938
97;3D Printed Materials for High Temperature Applications;940
97.1;Abstract;940
97.2;1 Introduction;940
97.3;2 3D Printed Materials for HT Applications;942
97.3.1;2.1 Metals and Alloys;943
97.3.2;2.2 Thermoplastic Materials;944
97.3.3;2.3 Materials for Surgical Sterilization;946
97.4;3 Conclusions;949
98;Optimization Design Strategy for Additive Manufacturing Process to Develop 3D Magnetic Nanocomposite Scaffolds;952
98.1;Abstract;952
98.2;1 Introduction;952
98.3;2 Materials and Methods;953
98.3.1;2.1 Design and Fabrication of 3D Additive Manufactured PCL/Iron Oxide Scaffolds;953
98.3.2;2.2 Mechanical Compression Tests;955
98.4;3 Results and Discussion;955
98.4.1;3.1 Process Temperature (PT);956
98.4.2;3.2 Deposition Velocity (DV);956
98.4.3;3.3 Screw Rotation Velocity (SRV);957
98.4.4;3.4 Slice Thickness (ST);958
98.4.5;3.5 Optimization of Process Parameters;958
98.5;4 Conclusions;960
98.6;References;961
99;Determination of Adhesive to Be Applied in the Fabrication of Prototypes Using FDM Techniques of 3D Printing in Component Parts Using ULTEM™ 1010;963
99.1;Abstract;963
99.2;1 Introduction;963
99.3;2 Materials and Methods;964
99.3.1;2.1 Materials;964
99.3.2;2.2 Adhesion Test;966
99.3.3;2.3 Tensile Test;967
99.3.4;2.4 Mixer Agitator Design;967
99.4;3 Results and Discussion;967
99.5;4 Conclusions;972
99.6;Acknowledgements;972
99.7;References;972
100;Assessment of Design for Additive Manufacturing Based on CAD Platforms;974
100.1;Abstract;974
100.2;1 Introduction;974
100.2.1;1.1 Critical Issues;976
100.3;2 Data Consistency Through a Computer Aided Platform;978
100.4;3 Case Study - Topology Optimized Wheel Knuckle;979
100.5;4 Results;981
100.6;5 Conclusions;983
100.7;References;984
101;Author Index;986




