Rissanen | Information and Complexity in Statistical Modeling | Buch | 978-1-4419-2267-0 | sack.de

Buch, Englisch, 142 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 242 g

Reihe: Information Science and Statistics

Rissanen

Information and Complexity in Statistical Modeling


1. Auflage. Softcover version of original hardcover Auflage 2007
ISBN: 978-1-4419-2267-0
Verlag: Springer

Buch, Englisch, 142 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 242 g

Reihe: Information Science and Statistics

ISBN: 978-1-4419-2267-0
Verlag: Springer


No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Inspired by Kolmogorov's structure function in the algorithmic theory of complexity, this is accomplished by finding the shortest code length, called the stochastic complexity, with which the data can be encoded when advantage is taken of the models in a suggested class, which amounts to the MDL (Minimum Description Length) principle. The complexity, in turn, breaks up into the shortest code length for the optimal model in a set of models that can be optimally distinguished from the given data and the rest, which defines "noise" as the incompressible part in the data without useful information.

Such a view of the modeling problem permits a unified treatment of any type of parameters, their number, and even their structure. Since only optimally distinguished models are worthy of testing, we get a logically sound and straightforward treatment of hypothesis testing, in which for the first time the confidence in the test result can be assessed. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial. The different and logically unassailable view of statistical modelling should provide excellent grounds for further research and suggest topics for graduate students in all fields of modern engineering, including and not restricted to signal and image processing, bioinformatics, pattern recognition, and machine learning to mention just a few.

Rissanen Information and Complexity in Statistical Modeling jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Information and Coding.- Shannon-Wiener Information.- Coding of Random Processes.- Statistical Modeling.- Kolmogorov Complexity.- Stochastic Complexity.- Structure Function.- Optimally Distinguishable Models.- The MDL Principle.- Applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.