Buch, Englisch, Band 990, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g
Reihe: Lecture Notes in Physics
Buch, Englisch, Band 990, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g
Reihe: Lecture Notes in Physics
ISBN: 978-3-030-82075-6
Verlag: Springer International Publishing
This book provides an introduction to relativistic dissipative fluid dynamics, with particular emphasis on its derivation from microscopic transport theory. After a phenomenological derivation of relativistic dissipative fluid dynamics from the second law of thermodynamics, the intrinsic instabilities of relativistic Navier-Stokes theory are discussed. In turn, analytical solutions of relativistic dissipative fluid dynamics are presented. Following, the authors discuss several theories and approaches to derive transport coefficients in dissipative fluid dynamics such as the Chapman-Enskog theory, the theory of Israel and Stewart, and a more recent derivation of relativistic dissipative fluid dynamics based on kinetic theory, which constitutes the main focus of the second part of this book.
This book is intended for advanced graduate students and researchers in physics and requires basic knowledge of the theory of special and general relativity. It should be of particularinterest to researchers that apply relativistic fluid dynamics in cosmology, astrophysics, and high-energy nuclear physics.Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Astronomie Astrophysik
- Naturwissenschaften Physik Angewandte Physik Astrophysik
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Naturwissenschaften Physik Quantenphysik Kernphysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Relativistic Fluid Dynamics.- Linear Stability and Causality.- Analytical Solutions and Transient Dynamics.- Microscopic Origin of Transport Coeffcients: Linear-Response Theory.- Fluid Dynamics from Kinetic Theory: Traditional Approaches.- Method of Moments: Equilibrium Reference State.- Method of Moments: Convergence Properties.- Fluid Dynamics from the Method of Moments.- Method of Moments: Anisotropic Reference State.