Riolo / Vladislavleva / McConaghy | Genetic Programming Theory and Practice VIII | Buch | 978-1-4614-2719-3 | sack.de

Buch, Englisch, 248 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Genetic and Evolutionary Computation

Riolo / Vladislavleva / McConaghy

Genetic Programming Theory and Practice VIII


2011
ISBN: 978-1-4614-2719-3
Verlag: Springer

Buch, Englisch, 248 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Reihe: Genetic and Evolutionary Computation

ISBN: 978-1-4614-2719-3
Verlag: Springer


The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.

Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.

Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .

Riolo / Vladislavleva / McConaghy Genetic Programming Theory and Practice VIII jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


FINCH: A System for Evolving Java (Bytecode).- Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving Genetic Programming Systems.- The Rubik Cube and GP Temporal Sequence Learning: An Initial Study.- Ensemble Classifiers: AdaBoost and Orthogonal Evolution of Teams.- Covariant Tarpeian Method for Bloat Control in Genetic Programming.- A Survey of Self Modifying Cartesian Genetic Programming.- Abstract Expression Grammar Symbolic Regression.- Age-Fitness Pareto Optimization.- Scalable Symbolic Regression by Continuous Evolution with Very Small Populations.- Symbolic Density Models of One-in-a-Billion Statistical Tails via Importance Sampling and Genetic Programming.- Genetic Programming Transforms in Linear Regression Situations.- Exploiting Expert Knowledge of Protein-Protein Interactions in a Computational Evolution System for Detecting Epistasis.- Composition of Music and Financial Strategies via Genetic Programming.- Evolutionary Art Using Summed Multi-Objective Ranks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.