Buch, Englisch, 444 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 6847 g
Reihe: Universitext
Buch, Englisch, 444 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 6847 g
Reihe: Universitext
ISBN: 978-3-319-77636-1
Verlag: Springer International Publishing
Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and G-convergence for phase transitions and homogenization are explored.
While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
Weitere Infos & Material
Part I Basic Course.- 1 Introduction.- 2 Convexity.- 3 Variations.- 4 Young Measures.- 5 Quasiconvexity.- 6 Polyconvexity.- 7 Relaxation.- Part II Advanced Topics.- 8 Rigidity.- 9 Microstructure.- 10 Singularities.- 11 Linear-Growth Functionals.- 12 Generalized Young Measures.- 13 G-Convergence.- A Prerequisites.- References.- Index.