Rijke | Introduction to Homotopy Type Theory | Buch | 978-1-108-84416-1 | sack.de

Buch, Englisch, Band 219, 383 Seiten

Reihe: Cambridge Studies in Advanced Mathematics

Rijke

Introduction to Homotopy Type Theory


Erscheinungsjahr 2025
ISBN: 978-1-108-84416-1
Verlag: Cambridge University Press

Buch, Englisch, Band 219, 383 Seiten

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-108-84416-1
Verlag: Cambridge University Press


This up-to-date introduction to type theory and homotopy type theory will be essential reading for advanced undergraduate and graduate students interested in the foundations and formalization of mathematics. The book begins with a thorough and self-contained introduction to dependent type theory. No prior knowledge of type theory is required. The second part gradually introduces the key concepts of homotopy type theory: equivalences, the fundamental theorem of identity types, truncation levels, and the univalence axiom. This prepares the reader to study a variety of subjects from a univalent point of view, including sets, groups, combinatorics, and well-founded trees. The final part introduces the idea of higher inductive type by discussing the circle and its universal cover. Each part is structured into bite-size chapters, each the length of a lecture, and over 200 exercises provide ample practice material.

Rijke Introduction to Homotopy Type Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Introduction; Part I. Martin-Löf's Dependent Type Theory: 1. Dependent type theory; 2. Dependent function types; 3. The natural numbers; 4. More inductive types; 5. Identity types; 6. Universes; 7. Modular arithmetic via the Curry-Howard interpretation; 8. Decidability in elementary number theory; Part II. The Univalent Foundations of Mathematics: 9. Equivalences; 10. Contractible types and contractible maps; 11. The fundamental theorem of identity types; 12. Propositions, sets, and the higher truncation levels; 13. Function extensionality; 14. Propositional truncations; 15. Image factorizations; 16. Finite types; 17. The univalence axiom; 18. Set quotients; 19. Groups in univalent mathematics; 20. General inductive types; Part III. The Circle: 21. The circle; 22. The universal cover of the circle; References; Index.


Rijke, Egbert
Egbert Rijke is Postdoctoral Research Fellow at Johns Hopkins University and is a pioneering figure in homotopy type theory. As one of the co-authors of the influential book 'Homotopy Type Theory: Univalent Foundations of Mathematics' (2013), he has played a pivotal role in shaping the field. He is also a founder and lead developer of the agda-unimath library, which stands as the largest library of formalized mathematics written in the Agda proof assistant.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.