Richter | From Categories to Homotopy Theory | E-Book | sack.de
E-Book

E-Book, Englisch, 0 Seiten

Reihe: Cambridge Studies in Advanced Mathematics

Richter From Categories to Homotopy Theory

E-Book, Englisch, 0 Seiten

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-108-84762-9
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Richter From Categories to Homotopy Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction; Part I. Category Theory: 1. Basic notions in category theory; 2. Natural transformations and the Yoneda lemma; 3. Colimits and limits; 4. Kan extensions; 5. Comma categories and the Grothendieck construction; 6. Monads and comonads; 7. Abelian categories; 8. Symmetric monoidal categories; 9. Enriched categories; Part II. From Categories to Homotopy Theory: 10. Simplicial objects; 11. The nerve and the classifying space of a small category; 12. A brief introduction to operads; 13. Classifying spaces of symmetric monoidal categories; 14. Approaches to iterated loop spaces via diagram categories; 15. Functor homology; 16. Homology and cohomology of small categories; References; Index.


Richter, Birgit
Birgit Richter is Professor of Mathematics at Universität Hamburg. She is the co-editor of Structured Ring Spectra (2004) and New Topological Contexts for Galois Theory and Algebraic Geometry (2009).


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.