Buch, Englisch, Band 47, 347 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1120 g
Reihe: NATO Science Series II: Mathematics, Physics and Chemistry
Buch, Englisch, Band 47, 347 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1120 g
Reihe: NATO Science Series II: Mathematics, Physics and Chemistry
ISBN: 978-1-4020-0207-6
Verlag: Springer Netherlands
Geodesics and chaotic orbits, magnetic knots and vortex links, continual flows and singularities become alive with more than 160 figures and examples.
In the opening article, H. K. Moffatt sets the pace, proposing eight outstanding problems for the 21st century. The book goes on to provide concepts and techniques for tackling these and many other interesting open problems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
I. Eight Problems for the XXI Century.- Some Remarks on Topological Fluid Mechanics.- II. Mathematics Background.- Differential Geometry of Curves and Surfaces.- Topology in Four Days.- Elements of Classical Knot Theory.- An Introduction to Knot Theory.- Fluid Mechanics and Mathematical Structures.- III. Geometry and Topology Of Fluid Flows.- to a Geometrical Theory of Fluid Flows and Dynamical Systems.- Streamline Patterns and their Bifurcations Using Methods from Dynamical Systems.- Topological Features of Inviscid Flows.- Geometric and Topological Aspects of Vortex Motion.- Topology Bounds the Energy.- Measures of Topological Structure in Magnetic Fields.- Diffeomorphisms, Braids and Flows.- Variational Principles, Geometry and Topology of Lagrangian-Averaged Fluid Dynamics.- IV. Reconnections and Singularities.- The Geometry of Reconnection.- Euler Singularities from the Lagrangian Viewpoint.- Analysis of a Candidate Flow for Hydrodynamic Blowup.